975 resultados para grapevine bacterial canker
Resumo:
Sintomas do cancro bacteriano da videira na variedade Red Globe foram observados em agosto de 2009 em pomar de Tupi Paulista, Estado de São Paulo, Brasil, e o agente causal Xanthomonas campestris pv. viticola foi identificado por meio de testes patológicos e moleculares. O procedimento de erradicação foi adotado e aproximadamente 4.700 plantas foram destruídas. Um levantamento realizado nas regiões produtoras do Estado de São Paulo não encontrou nenhum outro pomar contaminado, e essa espécie bacteriana é considerada ausente neste estado.
Resumo:
Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.
Resumo:
Bacterial canker of grapevine (Vitis vinifera), caused by Xanthomonas campestris pv. viticola was first detected in Brazil in 1998, affecting grapevines in the São Francisco river basin, state of Pernambuco. The disease was also reported in Juazeiro, Bahia and later in Piauí and Ceará. Due to its limited geographical distribution and relatively recent detection in Brazil, very little is known about the pathogen's biology and diversity. Repetitive DNA based-PCR (rep-PCR) profiles were generated from purified bacterial DNA of 40 field strains of X. campestris pv. viticola, collected between 1998 and 2001 in the states of Pernambuco, Bahia and Piauí. Combined analysis of the PCR patterns obtained with primers REP, ERIC and BOX, showed a high degree of similarity among Brazilian strains and the Indian type strain NCPPB 2475. Similar genomic patterns with several diagnostic bands, present in all strains, could be detected. Fingerprints were distinct from those of strains representing other pathovars and from a yellow non-pathogenic isolate from grape leaves. The polymorphism observed among the Brazilian strains allowed their separation into five subgroups, although with no correlation with cultivar of origin, geographic location or year collected.
Resumo:
In order to develop a molecular method for detection and identification of Xanthomonas campestris pv. viticola (Xcv) the causal agent of grapevine bacterial canker, primers were designed based on the partial sequence of the hrpB gene. Primer pairs Xcv1F/Xcv3R and RST2/Xcv3R, which amplified 243- and 340-bp fragments, respectively, were tested for specificity and sensitivity in detecting DNA from Xcv. Amplification was positive with DNA from 44 Xcv strains and with DNA from four strains of X. campestris pv. mangiferaeindicae and five strains of X. axonopodis pv. passiflorae, with both primer pairs. However, the enzymatic digestion of PCR products could differentiate Xcv strains from the others. None of the primer pairs amplified DNA from grapevine, from 20 strains of nonpathogenic bacteria from grape leaves and 10 strains from six representative genera of plant pathogenic bacteria. Sensitivity of primers Xcv1F/Xcv3R and RST2/Xcv3R was 10 pg and 1 pg of purified Xcv DNA, respectively. Detection limit of primers RST2/Xcv3R was 10(4) CFU/ml, but this limit could be lowered to 10² CFU/ml with a second round of amplification using the internal primer Xcv1F. Presence of Xcv in tissues of grapevine petioles previously inoculated with Xcv could not be detected by PCR using macerated extract added directly in the reaction. However, amplification was positive with the introduction of an agar plating step prior to PCR. Xcv could be detected in 1 µl of the plate wash and from a cell suspension obtained from a single colony. Bacterium identity was confirmed by RFLP analysis of the RST2/Xcv3R amplification products digested with Hae III.
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Resumo:
Abstract Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.
Resumo:
Background: Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results: Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion: The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Il cancro batterico dell’actinidia causato da Pseudomonas syringae pv.actinidiae (Psa) suscita grande interesse a livello globale a partire dal 2008. La malattia è comparsa in Giappone e in due anni ha avuto una diffusione epidemica in tutte le aree di coltivazione mondiale di actinidia. Gravi perdite economiche hanno attirato l’attenzione internazionale su questa problematica e grandi sforzi sono stati rivolti allo studio di questo patosistema ancora poco conosciuto. E’ emerso infatti che il patogeno può rimanere in fase latente per lunghi periodi senza causare sintomi caratteristici nelle piante infette, e che dalla comparsa dei sintomi la pianta muore nell’arco di un paio d’anni. Il monitoraggio ed il controllo della situazione è perciò di fondamentale importanza ed è ancora più importante prevenire la comparsa di nuovi focolai di infezione. A questo proposito sarebbe opportuno l’impiego di materiale vegetale di propagazione non infetto, ma in molti casi questo diventa difficile, dal momento che il materiale impiegato è generalmente quello asintomatico, non analizzato precedentemente per la presenza del patogeno. Negli ultimi anni sono state perciò messe a punto molte tecniche molecolari per l’identificazione di Psa direttamente da materiale vegetale. L’obiettivo di questo lavoro è stato quello di studiare l’epidemiologia di Psa in piante adulte infette e di verificare l’efficacia di metodi di diagnosi precoce per prevenire la malattia. A tale scopo il lavoro sperimentale è stato suddiviso in diverse fasi: i) studio della localizzazione, traslocazione e sopravvivenza di Psa nelle piante, a seguito di inoculazione in piante adulte di actinidia di ceppi marcati Psa::gfp; ii) studio della capacità di Psa di essere mantenuto in germogli di actinidia attraverso sette generazioni di micropropagazione dopo l’inoculazione delle piante madri con lo stesso ceppo marcato Psa::gfp; iii) studio ed applicazioni di un nuovo metodo di diagnosi precoce di Psa basato sull’analisi molecolare del “pianto”.
Resumo:
La cancrosis o chancro bacteriano de los cítricos (CBC) causada por Xanthomonas citri subsp. citri (Xcc) y X. fuscans subsp. aurantifolii, afecta a un gran número de especies dentro de la familia de las rutáceas, especialmente cítricos. Esta enfermedad produce graves pérdidas económicas allí donde está presente, principalmente porque la comercialización de cítricos desde las zonas afectadas hacía zonas libres de cancrosis, está sujeta a fuertes medidas cuarentenarias. La cancrosis se encuentra distribuida a nivel mundial pero no se ha localizado ni en la Unión Europea ni en ningún área del Mediterráneo. Se han descrito tres tipos de cancrosis en función de la gama de huésped y de las características fenotípicas y genotípicas de las bacterias que las producen. La más extendida es la cancrosis tipo A producida por Xcc, dentro de la cual se distinguen los subtipos Aw y A*, originarios de Florida y Sudeste Asiático, respectivamente, que de forma natural solo son capaces de producir enfermedad en lima mejicana. En este trabajo se presentan estudios sobre mecanismos implicados en las primeras etapas de la infección, como la quimiotaxis y formación de biopelículas, en la cancrosis de los cítricos. La quimiotaxis es el proceso por el cual las bacterias se dirigen hacia zonas favorables para su supervivencia y desarrollo. Los perfiles quimiotácticos obtenidos frente a distintas fuentes de carbono, así como los estudios en relación al contenido de proteínas aceptoras de grupos metilo (MCPs), permitieron agrupar a las cepas de Xanthomonas estudiadas en este trabajo, de acuerdo a la enfermedad producida y a su gama de huésped. Todas las cepas mostraron quimiotaxis positiva frente a extractos de hoja y apoplasto de diferentes especies, sin embargo, Xcc 306, X. alfalfae subsp. citrumelonis (Xac) y X. campestris pv. campestris (Xc) manifestaron respuestas más específicas frente a extractos de apoplasto de hojas de naranjo dulce, lima y col china, respectivamente. Dicho resultado nos permite asociar el mecanismo de quimiotaxis con la capacidad de las cepas de Xanthomonas para colonizar estos huéspedes de forma específica. Las cepas estudiadas fueron capaces de realizar movimiento tipo swimming, twitching y sliding en distintos medios, siendo el movimiento swimming el único en el que se encontraron diferencias entre las cepas de Xcc con distinta gama de huésped. En este trabajo se ha estudiado además la formación de biopelículas en superficies bióticas y abióticas, un mecanismo importante tanto para la supervivencia en superficie vegetal como para el desarrollo de la infección. Las cepas de Xanthomonas estudiadas fueron capaces de formar biopelículas in vitro, siendo mayor en un medio que simula el apoplasto y que contiene una baja concentración de nutrientes en comparación con medios que contenían alta concentración de nutrientes. La formación de biopelículas en superficie vegetal se encontró relacionada, en las cepas patógenas de cítricos, con la capacidad para infectar un tejido o huésped determinado. Se han caracterizado algunos de los componentes de la matriz extracelular producida por Xcc, que compone hasta un 90% de las bipoelículas. Entre ellos destaca el ADN extracelular, que tiene un papel como adhesina en las primeras etapas de formación de biopelículas y estructural en biopelículas maduras. Además, se han identificado el pilus tipo IV como componente importante en las biopelículas, que también participa en motilidad. Finalmente, se han realizado estudios sobre la expresión de genes implicados en motilidad bacteriana y formación de biopelículas que han confirmado las diferencias existentes entre cepas de Xcc de amplia y limitada gama de huésped, así como el papel que juegan elementos como el pilus tipo IV o el flagelo en estos procesos. ABSTRACT Xanthomonas citri subsp. citri (Xcc) and X. fuscans subsp. aurantifolii are the causal agents of Citrus Bacterial Canker (CBC) which is one of the most important citrus diseases. CBC affects all Citrus species as well as other species from Rutaceae family. CBC produces strong economic losses; furthermore the commercialization of plants and fruits is restricted from infested to citrus canker free areas. The disease is worldwide distributed in tropical and subtropical areas, however it is not present in the European Union. Three types of CBC have been described according to the host range and phenotypic and genotypic characteristics. CBC type A caused by Xcc is he widest distributed. Within CBC A type two subtypes Aw and A* were described from Florida and Iran respectively, both infecting only Mexican lime. Herein mechanisms connected to early events in the citrus bacterial canker disease such as chemotaxis and biofilm formation, were studied. Chemotaxis allows bacteria to move towards the more suitable environments for its survival, host colonization and infection. Studies performed on citrus pathogenic Xanthomonas and X. campestris pv. campestris (Xc), a crucifer pathogen, have shown different chemotactic profiles towards carbon compound as well as different MCPs profile, which clustered strains according to host range and disease caused. Every strain showed positive chemotaxis toward leaf extracts and apoplastic fluids from sweet orange, Mexican lime and Chinese cabbage leaves. However, a more specific response was found for strains Xcc 306, X. alfalfae subsp. citrumelonis and Xc towards sweet orange, Mexican lime and Chinese cabbage apoplastic fluids, respectively. These results relate chemotaxis with the higher ability of those strains to specifically colonize their proper host. Xanthomonas strains studied were able to perform swimming, sliding and twitching motilities. The ability to swim was variable among CBC strains and seemed related to host range. Biofilm formation is an important virulence factor for Xcc because it allows a better survival onto the plant surface as well as facilitates the infection process. The studied Xanthomonas strains were able to form biofilm in vitro, on both nutrient rich and apoplast mimicking media, furthermore the biofilm formation by all the strains was higher in the apoplast mimicking media. The ability to form biofilm in planta by Xcc and Xac strains was dependent of the host and the tissue colonized. The wide host range CBC strain was able to form biofilm onto several citrus leaves and fruits, however the limited host range CBC strain produced biofilm solely onto Mexican lime leaves and fruits. Furthermore Xac strain, which solely infects leaves of young plants, was not able to develop biofilms on fruits. Some components of the extracellular matrix produced by Xcc strains have been characterized. Extracellular DNA acted as an adhesin at the very early stages of biofilm formation and as structural component of mature biofilm for citrus pathogenic Xanthomonas. Furthermore type IV pilus has been identified as a component of the extracellular matrix in biofilm and motility. Transcriptional studies of genes related with biofilm formation and motility have confirmed the differential behavior found among wide and limited host range CBC strains as well as the role of type IV pili and flagellum on those processes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Resumo:
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.