874 resultados para granule mining
Resumo:
This paper presents an extended granule mining based methodology, to effectively describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other granules, it provides a kind of novel knowledge in databases. We also provide an algorithm to implement the proposed methodology. The experiments conducted to characterize a real network traffic data collection show that the proposed concepts and algorithm are promising.
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Resumo:
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.
Resumo:
This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
This thesis describes the development of a robust and novel prototype to address the data quality problems that relate to the dimension of outlier data. It thoroughly investigates the associated problems with regards to detecting, assessing and determining the severity of the problem of outlier data; and proposes granule-mining based alternative techniques to significantly improve the effectiveness of mining and assessing outlier data.
Resumo:
This thesis presents an association rule mining approach, association hierarchy mining (AHM). Different to the traditional two-step bottom-up rule mining, AHM adopts one-step top-down rule mining strategy to improve the efficiency and effectiveness of mining association rules from datasets. The thesis also presents a novel approach to evaluate the quality of knowledge discovered by AHM, which focuses on evaluating information difference between the discovered knowledge and the original datasets. Experiments performed on the real application, characterizing network traffic behaviour, have shown that AHM achieves encouraging performance.
Resumo:
Dealing with the large amount of data resulting from association rule mining is a big challenge. The essential issue is how to provide efficient methods for summarizing and representing meaningful discovered knowledge from databases. This paper presents a new approach called multi-tier granule mining to improve the performance of association rule mining. Rather than using patterns, it uses granules to represent knowledge that is implicitly contained in relational databases. This approach also uses multi-tier structures and association mappings to interpret association rules in terms of granules. Consequently, association rules can be quickly assessed and meaningless association rules can be justified according to these association mappings. The experimental results indicate that the proposed approach is promising