998 resultados para grain size effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the deformation behaviour in the fenite region of a Titanium stabilized Interstitial Free steel was investigated by hot torsion. The initial work hardening regime is followed by a softening regime where a broad peak stress develops. The peak stress and the stress at final strain were relatively insensitive to grain size. However, at low values of the Zener-Hollomon parameter, the strain to the peak stress was strongly dependent on the grain size. A series of microstructural parameters were examined to explain these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free (IF) steel was investigated using hot torsion. The initial work hardening regime is followed by the development of a broad stress peak after which work softening occurs. The hypothetical saturation stress (Estrin–Mecking model) and the stress at final strain were relatively insensitive to grain size. However, the strain to the peak stress was strongly dependent on the grain size at low values of the Zener–Hollomon parameter. A simple phenomenological approach, using a combined Estrin–Mecking model and an Avrami type equation, was used to model the flow curves. The hypothetical saturation stress, the stress at final strain and the strain to peak stress were modelled using three different hyperbolic sine laws. A comparison with independent data from the literature shows that the apparent activation energy of deformation determined in this work (Q=372 kJ/mol) can be used to rationalize the steady-state stress in compression data found in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of grain size on the deformation of extruded Mg-3Al-1Zn tested in tension at temperatures between room temperature and 300°C is investigated. The results enable estimation of the deformation conditions for the transition from slip to twinning dominated flow and for the initiation and completion of dynamic recrystallization. A map illustrating these critical parameters is constructed and it is shown that the operating conditions of the common wrought processes straddle key transitions in microstructure behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of extruded AZ31, AZ61 and AM-EX1 tubes was examined in three-point bending. Different extrusion temperatures were used to investigate the effect of grain size on the load-carrying capacity, energy absorption and fracture propensity of the tubes. Results showed that while the peak load increased with a smaller average recrystallised grain size, the retention of large elongated un-recrystallised grains in the microstructure reduced the load. The presence of the large elongated grains also appeared detrimental to the ability of the tube to deform before fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian Magnesium Corporation, in collaboration with the Cooperative Research Centre for Cast Metals Manufacturing (CAST) and Magnesium Elektron Limited, has developed a magnesium alloy, AM-SC1, which has been specifically designed for engine block applications [1]. This alloy has been used for the engine block of the Genois LE turbo charged diesel injection motor developed by AVL List [2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of austenite grain size on the kinetics of the isothermal bainitic transformation in a high-carbon super-bainitic steel was investigated. Experimental results showed that the transformation of super bainite was accelerated by a coarse austenite grain size. This is because while coarse austenite grains provide less nucleation sites, it is beneficial for bainite sheaf growth. Meanwhile, there is a critical austenite grain size below which there is a distinct grain size effect and above which it is not evident. © 2014 Elsevier B.V.