965 resultados para glucose blood level


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. Routine oxygen consumption and blood glucose were determined from freshwater fishes, Prochilodus scrofa and Cyprinus carpio, exposed at high temperatures for 1 hr. 2. 2. Prochilodus scrofa had a significantly higher rate of oxygen consumption at 30°C than at 25°C, and carp higher at 25°C than at 30°C. 3. 3. Blood glucose was significantly higher for Cyprinus carpio than for Prochilodus scrofa at 25 and 30°C; however, after exposure to these temperatures for 1 hr blood glucose did not change significantly for both species. 4. 4. The results suggest that these interspecific variations may be linked to the differences between native and foreign fishes and their way of life. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the relationship between blood lactate and glucose during an incremental test after exercise induced lactic acidosis, under normal and acute β-adrenergic blockade. Eight fit males (cyclists or triathletes) performed a protocol to determine the intensity corresponding to the individual equilibrium point between lactate entry and removal from the blood (incremental test after exercise induced lactic acidosis), determined from the blood lactate (Lacmin) and glucose (Glucmin) response. This protocol was performed twice in a double-blind randomized order by ingesting either propranolol (80 mg) or a placebo (dextrose), 120 min prior to the test. The blood lactate and glucose concentration obtained 7 minutes after anaerobic exercise (Wingate test) was significantly lower (p<0.01) with the acute β-adrenergic blockade (9.1±1.5 mM; 3.9±0.1 mM), respectively than in the placebo condition (12.4±1.8 mM; 5.0±0.1 mM). There was no difference (p>0.05) between the exercise intensity determined by Lacmin (212.1±17.4 W) and Glucmin (218.2±22.1 W) during exercise performed without acute β-adrenergic blockade. The exercise intensity at Lacmin was lowered (p<0.05) from 212.1±17.4 to 181.0±15.6 W and heart rate at Lacmin was reduced (p<0.01) from 161.2±8.4 to 129.3±6.2 beats min-1 as a result of the blockade. It was not possible to determine the exercise intensity corresponding to Glucmin with β-adrenergic blockade, since the blood glucose concentration presented a continuous decrease during the incremental test. We concluded that the similar pattern response of blood lactate and glucose during an incremental test after exercise induced lactic acidosis, is not present during β-adrenergic blockade suggesting that, at least in part, this behavior depends upon adrenergic stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imatinib is the standard of care for patients with advanced metastatic gastrointestinal stromal tumors (GIST), and is also approved for adjuvant treatment in patients at substantial risk of relapse. Studies have shown that maximizing benefit from imatinib depends on long-term administration at recommended doses. Pharmacokinetic (PK) and pharmacodynamic factors, adherence, and drug-drug interactions can affect exposure to imatinib and impact clinical outcomes. This article reviews the relevance of these factors to imatinib's clinical activity and response in the context of what has been demonstrated in chronic myelogenous leukemia (CML), and in light of new data correlating imatinib exposure to response in patients with GIST. Because of the wide inter-patient variability in drug exposure with imatinib in both CML and GIST, blood level testing (BLT) may play a role in investigating instances of suboptimal response, unusually severe toxicities, drug-drug interactions, and suspected non-adherence. Published clinical data in CML and in GIST were considered, including data from a PK substudy of the B2222 trial correlating imatinib blood levels with clinical responses in patients with GIST. Imatinib trough plasma levels <1100ng/mL were associated with lower rates of objective response and faster development of progressive disease in patients with GIST. These findings have been supported by other analyses correlating free imatinib (unbound) levels with response. These results suggest a future application for imatinib BLT in predicting and optimizing therapeutic response. Nevertheless, early estimates of threshold imatinib blood levels must be confirmed prospectively in future studies and elaborated for different patient subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-calorie malnutrition produces glucose intolerance and reduced insulin release in response to glucose. Rats adapted to low- or high-protein diets show an increased resistance to the diabetogenic action of a single dose of streptozotocin or alloxan. To determine the effects of dietary protein level on pancreatic function, we measured serum glucose levels under basal conditions and during the oral glucose tolerance test (GTT) performed before and after a single dose of alloxan administered to rats fed a 25% or a 6% protein diet for a period of 8 weeks. The incidence of mild hyperglycemia (serum glucose > 250 mg/dl) was greater among the rats fed the 25% protein diet (81%) than among those fed the 6% protein diet (42%). During the GTT performed before alloxan administration the serum glucose levels of the rats fed the 6% protein diet were not found to be significantly different from those of rats fed the 25% protein diet. During the GTT performed after alloxan injection all rats showed intolerance to the substrate (serum glucose > 160 mg/dl 120 min after glucose administration) regardless of whether basal serum glucose was normal or high. In summary, alloxan was less effective in producing basal hyperglycemia in the rats fed the 6% protein diet than in those fed the 25% protein diet but caused glucose intolerance during the oral GTT in both groups. Thus, it seems that feeding a 6% protein diet to rats offers only partial protection against the toxic effects of alloxan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose was infused intravenously into six ponies during halothane anaesthesia, to evaluate its effect on their endocrine response to anaesthesia. The ponies were premedicated with acepromazine, and anaesthesia was induced with thiopentone and maintained with halothane in oxygen for two hours. Glucose was infused to maintain the plasma glucose concentration above 20 mmol/litre. Anaesthesia was associated with hypothermia, a decrease in haematocrit, hypotension, hyperoxaemia, respiratory acidosis and an increase in the plasma concentrations of lactate and arginine vasopressin. The concentration of β-endorphin in plasma increased transiently after 20 minutes but there were no changes in concentrations of adrenocorticotrophic hormone, dynorphin, cortisol or catecholamines. These data suggest that the glucose infusion attenuated the normal adrenal response of ponies to halothane anaesthesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was designed to evaluate the effects of chronic aerobic exercise (swimming, 1h/day, 5 days/week, with an overload of 5% body weight) on glucose metabolism in obese male Wistar rats. Hypothalamic obesity was induced through administration of monosodium glutamate (MSG) at 4 mg/g of body weight every other day from birth to 14 days old. Fourteen weeks after drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (swimming for 10 weeks). Rats of the same age and strain, receiving saline in place of MSG, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, an oral glucose tolerance test was performed and serum glucose (AG) and insulin (AI) were evaluated. A constant for serum glucose decrease (Kitt) in response to exogenous insulin was calculated. Soleus muscle strips and adipose tissue samples were incubated and insulin stimulated glucose uptake determined. No differences were observed in AG among the 4 groups. MSG-S rats showed higher AI (418%) and lower Kitt (92.3%) than C-S rats. T-rats showed higher glucose uptake by muscle (224.0%) and adipose tissues (94.1%) than S-rats. Among trained rats, glucose uptake by muscle was higher in MSG-T (5.4%) than in C-T. while the opposite was observed in adipose tissue (39% higher in C-T). Chronic aerobic exercise was able to improve glucose tolerance and reduce insulin resistance in MSG-obese rats. These effects were associated to an increase in glucose uptake by muscle and adipose tissue in response to insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we examined the effects of feeding a low protein diet during pregnancy on glucose-induced insulin secretion and glucose homeostasis in rats. Young (60 days), pregnant (P) or non-pregnant (NP) rats were fed during pregnancy or for 21 days (the NP) a normal (17%) or a low (6%) protein diet. Serum glucose and insulin levels and pancreas insulin content in the fed state; total area under serum glucose curve (AG) after a glucose load and serum glucose disappearance rate (Kitt) after insulin administration; as well as 86Rb outflow, 45Ca uptake and insulin secretion by isolated pancreatic islets in response to glucose were evaluated. Serum glucose was lower in 17%-P (12%) and 6%-P (27%) than in corresponding NP-rats. Serum insulin was higher in 17%- P (153%) and 6%-P (77%) compared to the corresponding NP-rats. Pancreatic insulin was higher in 6%-rats (55%) than in 17%-rats. No differences were found in AG among the groups whereas Kitt was lower in 6%-NP and higher in 6%-P than in the equivalent 17% rats. Increasing glucose concentration from 2.8 to 16.7 mmol/l, reduced 86Rb outflow from isolated islets from all groups. Increasing glucose concentration from 2.8 to 16.7 mmol/l elevated 45Ca uptake by 17%-NP (47%), 17%-P (40%) and 6%-P (214%) islets but not by 6%-NP ones. The increase in 45Ca uptake was followed by an increase in insulin release by the 17%-NP (2767%), 17%-P (2850%) and 6%-P (1200%) islets. In conclusion, 6%-P rats show impaired glucose induced insulin secretion related to reduced calcium uptake by pancreatic islets. However, the poor insulin secretion did not fully compensate the high peripheral sensitivity to the hormone, resulting in hypoglycemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microalbuminuria may reflect diffuse endothelial damage. Considering that diabetes and hypertension cause vasculopathy, we investigated associations of albumin-to-creatinine ratio (ACR) with plasma glucose and blood pressure levels in high-risk subjects for metabolic syndrome. Methods: A sample of 519 (246 men) Japanese-Brazilians (aged 60 ± 11 years), who participated in a population-based study, had their ACR determined in a morning urine specimen. Backward models of multiple linear regression were created for each gender including log-transformed values of ACR as dependent variable; an interaction term between diabetes and hypertension was included. Results: Macroalbuminuria was found in 18 subjects. ACR mean values for subjects with normal glucose tolerance, impaired fasting glycemia, impaired glucose tolerance and diabetes were 9.9 ± 6.0, 19.0 ± 35.4, 20.7 ± 35.4, and 33.9 ± 55.0 mg/g, respectively. Diabetic subjects showed higher ACR than the others (p < 0.05). An increase in the proportion of albuminuric subjects was observed as glucose metabolism deteriorated (4.9, 17.0, 23.0 and 36.0%). Stratifying into 4 groups according to postchallenge glycemia (< 7.8 mmol/l, n = 9 1; ≥ 7.8 mmol/l, n = 4 10) and hypertension, hypertensive and glucose-intolerant subgroups showed higher ACR values. ACR was associated with gender, waist circumference, blood pressure, plasma glucose and triglyceride (p < 0.05); albuminuric subjects had significantly higher levels of such variables than the normoalbuminuric ones. In the final models of linear regression, systolic blood pressure and 2-hour glycemia were shown to be independent predictors of ACR for both genders (p < 0.05). In men, also waist was independently associated with ACR. No interaction was detected between diabetes and hypertension. Conclusions: These findings suggest that both glucose intolerance and hypertension could have independent but not synergistic effects on endothelial function - reflected by albumin loss in urine. Such hypothesis needs to be confirmed in prospective studies. © 2004 Dustri-Verlag Dr. K. Feistle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether glucose tolerance varies throughout the day in people with impaired glucose tolerance (IGT). We studied 15 healthy IGT, and 18 matched normal glucose tolerant (NGT) individuals. Blood samples were taken every 30-120 min during a 24 h period in which all individuals had three mixed meals and nocturnal sleep. We measured glucose, free fatty acids, specific insulin, intact proinsulin, cortisol and growth hormone. Variable responses were considered as concentrations and areas under the curves. Comparison between the groups was by Student's t-test, Mann-Whitney, and analysis of variance. Higher total glucose response, inappropriate normal total insulin response, and unproportionally increased proinsulin total response were observed in the IGT group. Lower glucose tolerance occurred in IGT after dinner, as in the NGT, and after breakfast associated with increased insulin response after breakfast, and similar proinsulin response after all three meals. IGT had higher glucose response than NGT after breakfast and lunch, similar insulin responses, and increased proinsulin-insulin ratio after all three meals. Data from this study demonstrate that IGT individuals present lower glucose tolerance in the evening, as those with NGT, and in the morning, as reported in patients with type 2 diabetes. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate data from patients with normal oral glucose tolerance test (OGTT) results and a normal or impaired glycemic profile (GP) to determine whether lower cutoff values for the OGTT and GP (alone or combined) could identify pregnant women at risk for excessive fetal growth. Methods: We classified 701 pregnant women with positive screening for gestational diabetes mellitus (GDM) into 2 categories - (1) normal 100-g OGTT and normal GP and (2) normal 100-g OGTT and impaired GP - to evaluate the influence of lower cutoff points in a 100-g OGTT and GP (alone or in combination) for identification of pregnant women at excessive fetal growth risk. The OGTT is considered impaired if 2 or more values are above the normal range, and the GP is impaired if the fasting glucose level or at least 1 postprandial glucose value is above the normal range. To establish the criteria for the OGTT (for fasting and 1, 2, and 3 hours after an oral glucose load, respectively), we considered the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL), mean plus 1 SD (85 mg/dL, 151 mg/dL, 133 mg/dL, and 118 mg/dL), and mean plus 2 SD (95 mg/dL, 182 mg/dL, 153 mg/dL, and 139 mg/dL); and for the GP, we considered the mean and mean plus 1 SD (78 mg/dL and 92 mg/dL for fasting glucose levels and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial glucose levels, respectively). Results: Subsequently, the women were reclassified according to the new cutoff points for both tests (OGTT and GP). Consideration of values, in isolation or combination, yielded 6 new diagnostic criteria. Excessive fetal growth was the response variable for analysis of the new cutoff points. Odds ratios and their respective confidence intervals were estimated, as were the sensitivity and specificity related to diagnosis of excessive fetal growth for each criterion. The new cutoff points for the tests, when used independently rather than collectively, did not help to predict excessive fetal growth in the presence of mild hyperglycemia. Conclusion: Decreasing the cutoff point for the 100-g OGTT (for fasting and 1, 2, and 3 hours) to the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL) in association with the GP (mean or mean plus 1 SD-78 mg/dL and 92 mg/dL for the fasting state and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial values-increased the sensitivity and specificity, and both criteria had statistically significant predictive power for detection of excessive fetal growth. © 2008 AACE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan. Methods: Female Wistar rats aged 6 days were injected with either 250 mg/ kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index. Results: The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls. Conclusion: Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition. © 2008 Mota et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. © 2013 Moura et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Chronic exposure to intermittent hypoxia commonly induces the activation of sympathetic tonus and the disruption of glucose homoeostasis. However, the effects of exposure to acute intermittent hypoxia (AIH) on glucose homoeostasis are not yet fully elucidated. Herein, we evaluated parameters related to glucose metabolism in rats exposed to AIH. Methods: Male adult rats were submitted to 10 episodes of hypoxia (6% O2, for 45 s) interspersed with 5-min intervals of normoxia (21%), while the control (CTL) group was kept in normoxia. Results: Acute intermittent hypoxia rats presented higher fasting glycaemia, normal insulinaemia, increased lactataemia and similar serum lipid levels, compared to controls (n = 10, P < 0.05). Additionally, AIH rats exhibited increased glucose tolerance (GT) (n = 10, P < 0.05) and augmented insulin sensitivity (IS) (n = 10, P < 0.05). The p-Akt/Akt protein ratio was increased in the muscle, but not in the liver and adipose tissue of AIH rats (n = 6, P < 0.05). The elevated glycaemia in AIH rats was associated with a reduction in the hepatic glycogen content (n = 10, P < 0.05). Moreover, the AIH-induced increase in blood glucose concentration, as well as reduced hepatic glycogen content, was prevented by prior systemic administration of the β-adrenergic antagonist (P < 0.05). The effects of AIH on glycaemia and Akt phosphorylation were transient and not observed after 60 min. Conclusions: We suggest that AIH induces an increase in blood glucose concentration as a result of hepatic glycogenolysis recruitment through sympathetic activation. The augmentation of GT and IS might be attributed, at least in part, to increased β-adrenergic sympathetic stimulation and Akt protein activation in skeletal muscles, leading to a higher glucose availability and utilization. © 2013 Scandinavian Physiological Society.