970 resultados para global environmental Facility
Resumo:
Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.
Resumo:
A new database called the World Resource Table is constructed in this study. Missing values are known to produce complications when constructing global databases. This study provides a solution for applying multiple imputation techniques and estimates the global environmental Kuznets curve (EKC) for CO2, SO2, PM10, and BOD. Policy implications for each type of emission are derived based on the results of the EKC using WRI. Finally, we predicted the future emissions trend and regional share of CO2 emissions. We found that East Asia and South Asia will be increasing their emissions share while other major CO2 emitters will still produce large shares of the total global emissions.
Resumo:
With the continued diffusion of global boundaries coupled with the onset of increased environmental pressure, construction industry attitudes are also shifting. The aim of this paper is to evaluate the construction industry attitudes to global environmental change in both the United Kingdom and Japan. In order to achieve this goal, a qualitative mixed method approach is adopted, encompassing a desk based critique of the literature coupled with an industry interview from both regions. This methodology is adopted with the objective of ascertaining if there are any geographical similarities or differences with the regions in question. The resulting information is analyzed and the results deciphered utilizing mind mapping techniques in the dissemination of the data obtained with the objective of identifying various traits within the data. The results indicate that the United Kingdom and Japan both illustrate various attributes in relation to attitudes towards the global environment. In particular, research indicates that in the Japanese construction industry, there is a distinct lack of enthusiasm shown in construction industry attitudes to counteract environmental challenges currently being faced by implementing sustainable practices, compared to attitudes in the UK construction industry. One of the reasons identified for this, is the lack of leadership provided by the corresponding government, thus resulting in the lack of promotion of sustainable practices in the region. The benefit of this research is that it enables various industry leaders, regardless of geographical location, to actively consider the attitudes and perceptions of those around them, particularly in relation to the sensitive topic of global environmental change within the industry. Where the findings are acknowledged and also utilized, the results should aid in the improvement of the industry on an international scale, while also improving the overall persona of environmental change within the sector.
Resumo:
by Joanne M. Kaufman.
Resumo:
The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.
Resumo:
The World Bank, United Nations and UK Department for International Development (DfID) have spearheaded a recent global drive to regularize artisanal and small-scale mining (ASM), and provide assistance to its predominantly impoverished participants. To date, millions of dollars have been pledged toward the design of industry-specific policies and regulations; implementation of mechanized equipment; extension; and the launch of alternative livelihood (AL) programmes aimed at diversifying local economies. Much of this funding, however, has failed to facilitate marked improvements, and in many cases, has exacerbated problems. This paper argues that a poor understanding of artisanal, mine-community dynamics and operators’ needs has, in a number of cases, led to the design and implementation of inappropriate industry support schemes and interventions. The discussion focuses upon experiences from sub-Saharan Africa, where ASM is in the most rudimentary of states.