993 resultados para global cooling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large, well-documented wildfires have recently generated worldwide attention, and raised concerns about the impacts of humans and climate change on wildfire regimes. However, comparatively little is known about the patterns and driving forces of global fire activity before the twentieth century. Here we compile sedimentary charcoal records spanning six continents to document trends in both natural and anthropogenic biomass burning for the past two millennia. We find that global biomass burning declined from AD 1 to 1750, before rising sharply between 1750 and 1870. Global burning then declined abruptly after 1870. The early decline in biomass burning occurred in concert with a global cooling trend and despite a rise in the human population. We suggest the subsequent rise was linked to increasing human influences, such as population growth and land-use changes. Our compilation suggests that the final decline occurred despite increasing air temperatures and population. We attribute this reduction in the amount of biomass burned over the past 150 years to the global expansion of intensive grazing, agriculture and fire management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as `evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m(-2) source of latent heat flux along with a uniform 1 W m(-2) sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 +/- 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Pollen analysis and 5 radiocarbon dates for a 687-cm core provide a detailed chronology of environmental change for San Joaquin Marsh at the head of Newport Bay, Orange County, California. Sediment deposition kept pace with sea level rise during the mid-Holocene, but after 4500 years BP, sea water regularly reached the coring site, and salt marsh was the local vegetation. Brief periods of dominance by fresh-water vegetation 3800, 2800, 2300 and after 560 years BP correlate global cooling events and (except the 3800-year BP event) with carbon-14 production anomalies. The coincidence of climate change and carbon-14 anomalies support a causal connection with solar variability, but regardless of the causal mechanism(s) the delta-carbon-14 curves provide a chronology for global, high-frequency climatic change comparable to that of Milankovitch cyclicity for longer time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nectogaline shrews are a major component of the small mammalian fauna of Europe and Asia, and are notable for their diverse ecology, including utilization of aquatic habitats. So far, molecular phylogenetic analyses including nectogaline species have been unable to infer a well-resolved, well-supported phylogeny, thus limiting the power of comparative evolutionary and ecological analyses of the group. Here, we employ Bayesian phylogenetic analyses of eight mitochondrial and three nuclear genes to infer the phylogenetic relationships of nectogaline shrews. We subsequently use this phylogeny to assess the genetic diversity within the genus Episoriculus, and determine whether adaptation to aquatic habitats evolved independently multiple times. Moreover, we both analyze the fossil record and employ Bayesian relaxed clock divergence dating analyses of DNA to assess the impact of historical global climate change on the biogeography of Nectogalini. We infer strong support for the polyphyly of the genus Episoriculus. We also find strong evidence that the ability to heavily utilize aquatic habitats evolved independently in both Neomys and Chimarrogale + Nectogale lineages. Our Bayesian molecular divergence analysis suggests that the early history of Nectogalini is characterized by a rapid radiation at the Miocene/Pliocene boundary, thus potentially explaining the lack of resolution at the base of the tree. Finally, we find evidence that nectogalines once inhabited northern latitudes, but the global cooling and desiccating events at the Miocene/Pliocene and Pliocene/Pleistocene boundaries and Pleistocene glaciation resulted in the migration of most Nectogalini lineages to their present day southern distribution. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A balloon tethered at an altitude of 20 km could deliver a particulate cloud leading to global cooling. Tethering a balloon at this altitude poses significant problems with respect to vibration and stability, especially in regions of high wind. No-one has ever proposed, yet alone launched, a balloon at an altitude of 20 km tethered to the ground. Owing to wind, the tether needs to be 23 km in length and is to be fixed to a ship at sea or on land in equatorial regions. Whilst the balloon at 20 km is subject to relatively modest wind conditions, at jet stream altitudes (10km) the tether will experience much higher wind loadings, not only because of the high wind speeds of up to 300 km / hr but also because of the high air density. A tether of circular cross section in these high winds will be subject to horizontal and downward drag forces that would bring the aerostat down. For this reason it is advantageous to consider a self-aligning tether of an aerodynamic cross section whereby it is possible to reduce the drag substantially. One disadvantage of a non-circular tether is the possibility of flutter and galloping instabilities. It is reasonably straightforward to model these phenomena for short lengths of aerofoil, but the situation becomes more complex for a 20 km tensioned tether with large deflection and curvature, variable wind speed, variable air density and variable tension. Analysis using models of infinite length are used to establish the stability at a local scale where the tension, aerodynamic and geometric properties are considered constant. Dispersion curve analysis is useful here. But for dynamics on a long-wavelength scale (several km) then a full non-linear analysis is required. This non-linear model can be used to establish the local values of tension appropriate for the dispersion analysis. This keynote presentation will give some insight into these issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigating the interplay between continental weathering and erosion, climate, and atmospheric CO2 concentrations is significant in understanding the mechanisms that force the Cenozoic global cooling and predicting the future climatic and environmental response to increasing temperature and CO2 levels. The Miocene represents an ideal test case as it encompasses two distinct extreme climate periods, the Miocene Climatic Optimum (MCO) with the warmest time since 35 Ma in Earth's history and the transition to the Late Cenozoic icehouse mode with the establishment of the east Antarctic ice sheet. However the precise role of continental weathering during this period of major climate change is poorly understood. Here we show changes in the rates of Miocene continental chemical weathering and physical erosion, which we tracked using the chemical index of alteration ( CIA) and mass accumulation rate ( MAR) respectively from Ocean Drilling Program (ODP) Site 1146 and 1148 in the South China Sea. We found significantly increased CIA values and terrigenous MARs during the MCO (ca. 17-15 Ma) compared to earlier and later periods suggests extreme continental weathering and erosion at that time. Similar high rates were revealed in the early-middle Miocene of Asia, the European Alps, and offshore Angola. This suggests that rapid sedimentation during the MCO was a global erosion event triggered by climate rather than regional tectonic activity. The close coherence of our records with high temperature, strong precipitation, increased burial of organic carbon and elevated atmospheric CO2 concentration during the MCO argues for long-term, close coupling between continental silicate weathering, erosion, climate and atmospheric CO2 during the Miocene. Citation: Wan, S., W. M. Kurschner, P. D. Clift, A. Li, and T. Li (2009), Extreme weathering/ erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea, Geophys. Res. Lett., 36, L19706, doi: 10.1029/2009GL040279.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Late Cenozoic has witnessed a series of climate-environmental change which ends with a transitional shift from greenhouse to icehouse conditions. In last two decades, scientists began to employ the tectonic uplift and its weathering effect to interpret the climatic changes during the late Cenozoic. However, this endeavor has partly been restricted by the lacking of regional and global chemical weathering data. The loess-red clay deposit in the Loess Plateau may record the weathering features of the detritus material from the wide range upwind of the Loess Plateau. Therefore geochemistry of the loess-plaeosol and red clay sequences may provide insights into the regional chemical weathering regime and the connection between the chemical weathering and the late Cenozoic climate-environmental change Here we selected 319 samples from the Baishui section near the Pingliang City, Gansu Province, and analyzed them with X-ray fluorescence. Based on the result, we reconstruct the chemical weathering history of the Baishui section since 6Ma. We chose CIA as the proxy for chemical weathering intensity. The CIA ratio in soil units is higher than in adjacent loess horizons, but lower than in the red clay, in good agreement with the field observation. The CIA ratios of the Baishui section correlates well with the global ice volume fluctuations, indicating that the global cooling may contribute a lot to the chemical weathering variations in Chinese Loess Plateau. There are at least 3 million-year time scale variations that can be identified in the chemical weathering intensity curve, i.e., between 3.3 to 2.1 Ma, 1.7 to 0.9 Ma and from 0.9Ma. We think these may reflect the combined effect of the tectonic uplift and ice sheets on monsoon intensity. Other time scale variations can be also observed. In the period between 2.4 and 0.8 Ma, the CIA record display the 400,000 years cycle, which may be resulted from the Tibetan uplift during the Pliocene-early Pleistocene which have significantly amplified the monsoon response sensitivity to the orbital-scale variations in insolation. From 1.2 Ma, the 100,000 years period became intensifying, and particularly after 0.8 Ma, the earlier monsoon response at 400,000 year periodicity was overwhelmed by the ice sheet forcing at 100,000 year periodicity. These may indicate that the expansions of the Northern Hemisphere ice sheets may have crossed a threshold, which enforce the monsoon responding at the 100,000 year periodicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three eolian deposit formations, including Quaternary loess (QL, Liu et al.3 1985), Hipparion red earth (HRE, also called red clay, Liu et al., 1985) and Miocene loess (ML, Guo et al., 2002) constitute a set of unique paleoclimatic archives in northern China dated back to at least 22Ma ago. The Miocene loess is a recently discovered loess-soil sequence. Detailed investigation has been made on its origin, chronology and paleoclimatic significance (Guo et al., 2002), but further work is still needed to obtain detailed paleoclimate information, and mechanical links behind paleoclimatic changes. In this study, grain size analysis of QL, HRE and ML has been conducted on two sections: Qinan and Xifeng. The objective is focused on comparison of the grain size distribution characteristics (GSDC) among different eolian deposit formations, and reconstruction of the Asian monsoon circulation in the past 22 Ma. Results show that GDSC of ML resembles that of QL and HRE, and GDSC of ML is especially similar to HRE. Both ML and HRE contain a significant proportion of fine fraction, however, QL has a large amount of coarse sediments. This is mainly due to that the wind system transported aeolian dust was weaker in the late Tertiary than that in the Quaternary. Grain size difference between loess and paleosol in ML is much smaller than that in QL, indicating that the climatic fluctuations during the late Tertiary were much smaller than that happened in the Quaternary The grain size records of the past 22 Ma reveal several evolution phases of the Asia winter monsoon. -2.7 Ma BP is the most important boundary in the process of the winter monsoon evolution: the wind strength have significantly enhanced since 2.7 Ma ago. During a period between -22.0 and -3.6 Ma, three periods with relatively stronger winter monsoon are recorded in the QA-I section, between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 to 6.9 Ma, respectively. From 3.6 to 2.7, the winter monsoon was enhanced gradually. In the Miocene time, the intensified winter monsoon phases (between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 and 6.9 Ma) seemed to have a close relationship with the uplift of the Tibetan Plateau and/or the ongoing global cooling, but the forcing mechanism behind the Asia winter monsoon evolution need to be further investigated. During the Pliocene-Pleistocene time, the Asia winter monsoon strengthened at 3.6 and 2.7Ma ago are in good agreement with the ongoing global cooling and the Arctic ice sheet development. In the mean time, much evidence suggests that an intense uplift of the Tibetan Plateau occurred at ~3.6 Ma, which is synchronous with a major increase in Asia winter monsoon. Therefore, two major factors may be invoked to explain the winter monsoon enhancement: Arctic ice sheet development and Tibetan uplift. We propose that changes in location and intensity of the Siberian-Mongolian high that were caused by the Tibetan uplift and Arctic ice sheet development might be an important factor for Asian winter monsoon evolution in the Pliocene-Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distinctive period of global change occurred during the PUocene between the warm Miocene and subsequent Quaternary cooling. Samples from Ocean Drilling Project Site 11 79 (-5586 mbsl, 41°4'N, 159°57'E), Site 881 (-5765 mbsl, 47°6.133'N, 161°29.490'E) and Site 882 (-3255 mbsl, 50°22'N, 167°36'E) were studied to determine the magnitude and composition ofterrigenous flux to the western mid-latitude North Pacific and its relation to climate change in East Asia since the mid-Pliocene. Dust-sized particles (including pollen), sourced from the arid regions and loess plateaus in East Asia are entrained by prevailing westerly winds and transported to the midlatitude northwest North Pacific Ocean. This is recorded by peaks in the total concentration of pollen and spores, as well as the mean grain size of allochthonous and autochthonous silicate material in abyssal marine sediments. Aridification of the Asian interior due to the phased uplift of the Himalayan-Tibetan Plateau created the modem East Asian Monsoon system dominated by a strengthening of the winter monsoon. The winter monsoon is further enhanced during glacials due to the expansion of desert and steppe environments at the expense ofwoodlands and forests recorded by the composition of palynological assemblages. The late Pliocene-Pleistocene glacials at ODP Sites 1 179, 881, and 882 are characterized by increases in grain size, magnetic susceptibility, pollen and spore concentrations around 3.5-3.3, 2.6-2.4, 1.7-1.6, and 0.9-0.7 Ma (ages based on magnetostratigraphic and biostratigraphic datums). The peaks during these times are relatively rich in pollen taxa derived primarily from steppe and boreal vegetation zones, recording cool, dry climates. The overall size increase of sediment and abundance of terrestrial palynomorphs record enhanced wind strength. The increase in magnitude of pollen and spore concentrations as well as grain size record global cooling and Northern Hemisphere glaciation. The peaks in grain size as well as pollen and spore abundance in marine sediments correlate with the mean grain size of loess in East Asia, consistent with the deflation of unarmoured surfaces during glacials. The transport of limiting nutrients to marine environments enhanced sea surface productivity and increased the rate of sediment accumulation.