963 resultados para glass-forming ability
Resumo:
Four Cu bearing alloys of nominal composition Zr25Ti25Cu50, Zr34Ti16Cu50, Zr25Hf25Cu50 and Ti25Hf25Cu50 have been rapidly solidified in order to produce ribbons. All the alloys become amorphous after meltspinning. In the Zr34Ti16Cu50 alloy localized precipitation of cF24 Cu5Zr phase can be observed in the amorphous matrix. The alloys show a tendency of phase separation at the initial stages of crystallization. The difference in crystallization behavior of these alloys with Ni bearing ternary alloys can be explained by atomic size, binary heat of mixing and Mendeleev number. It has been observed that both Laves and Anti-Laves phase forming compositions are suitable for glass formation. The structures of the phases, precipitated during rapid solidification and crystallization can be viewed in terms of Bernal deltahedra and Frank-Kasper polyhedra.
Resumo:
Melt spinning of Ti50Ni50 ? xCux (x = 10, 25, 40) alloys showed that the glass-forming ability is good for Cu-rich compositions and poor for Ni-rich compositions. The results of mechanical alloying experiments in the same system showed a reverse trend as far as the glass-forming ability is concerned. These contradictory results are explained in the light of thermodynamic and kinetic considerations. Crystallization results of the melt spun alloys are also presented.
Resumo:
An attempt has been made to describe the glass forming ability (GFA) of liquid alloys, using the concepts of the short range order (SRO) and middle range order (MRO) characterizing the liquid structure.A new approach to obtain good GFA of liquid alloys is based on the following four main factors: (1) formation of new SRO and competitive correlation with two or more kinds of SROs for crystallization, (2) stabilization of dense random packing by interaction between different types of SRO, (3) formation of stable cluster (SC) or middle range order (MRO) by harmonious coupling of SROs, and (4) difference between SRO characterizing the liquid structure and the near-neighbor environment in the corresponding equilibrium crystalline phases. The atomic volume mismatch estimated from the cube of the atomic radius was found to be a close relation with the minimum solute concentration for glass formation. This empirical guideline enables us to provide the optimum solute concentration for good GFA in some ternary alloys. Model structures, denoted by Bernal type and the Chemical Order type, were again tested in the novel description for the glass structure as a function of solute concentration. We illustrated the related energetics of the completion between crystal embryo and different types of SRO. Recent systematic measurements also provide that thermal diffusivity of alloys in the liquid state may be a good indicator of their GFA.
Resumo:
A thick amorphous alloy (a-alloy) coating was synthesized by laser cladding. The a-alloy had a multicomponent chemistry, i.e., Ni66Cr5MO4Zr6P15B4 (in atom%). The maximum thickness of the coating is 0.8 mm. The a-alloy coating had large glass-forming ability (GFA) with wide supercooled liquid region (SLR) ranging from 52 to 61 K through the coating. The reason for high GFA in the a-alloy coating was discussed. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]
Resumo:
A combination of an extension of the topological instability "λ criterion" and the "average electronegativity" has been recently reported in the literature to predict compositions with high glass-forming ability (GFA). In the present work, both criteria have been applied to select the Ni61.0Nb36.0B3 alloy with a high glass-forming ability. Ingots were prepared by arc-melting and were used to produce ribbons processed by the melt-spinning technique further characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Ni61.0Nb36.0B3 alloy revealed a complete amorphization and supercooled liquid region ΔTx = 68 K. In addition, wedge-shaped samples were prepared using copper mold casting in order to determine the critical thickness for amorphous formation. Scanning electron microscopy (SEM) revealed that fully amorphous samples could be obtained, reaching up to ~800 µm in thickness.
Resumo:
A significant enhancement in glass formation in a newly developed Zr51Cu20.7Ni12Al16.3 alloy has been achieved by yttrium doping. With just 0.5 at.% yttrium doping, the critical diameter of the as-cast alloys for glass formation has been increased from 3 mm to at least 10 mm. In the undoped, large-sized alloys, massive oxygen stabilized crystalline phases are observed but disappear in yttrium doped alloys. Very small amounts of stable alpha-Y2O3 phases found in the yttrium doped alloys, and their negligible effect on the metallic glasses' properties, provide a superior solution to achieve metallic glasses with a high glass formability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples.
Resumo:
Azobenzene-containing materials exhibit various photomechanical properties, including the formation of surface relief gratings (SRG) when irradiated with two interfering laser beams. In a recent study, a novel glass-forming derivative of Disperse Red 1 (DR1) with a mexylaminotriazine group was synthesized in high yield with a simple and efficient procedure, and showed the ability to form high-quality amorphous thin films with a high resistance to crystallization. Irradiation of films of this material yielded SRG with growth rates comparable to other reported azo materials. Herein, a series of closely related molecular glasses containing azobenzene chromophores with various absorption maxima ranging from 410 to 570 nm were synthesized, and their physical and photomechanical properties were studied. All materials studied showed the ability to form stable glassy phases, and irradiation with lasers emitting at various wavelengths allowed to perform a comparative study of SRG growth within a series of analogous chromophores.
Resumo:
The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.
Resumo:
Fragility is viewed as a measure of the loss of rigidity of a glass structure above its glass transition temperature. It is attributed to the weakness of directional bonding and to the presence of a high density of low-energy configurational states. An a priori fragility function of electronegativities and bond distances is proposed which quite remarkably reproduces the entire range of reported fragilities and demonstrates that the fragility of a melt is indeed encrypted in the chemistry of the parent material. It has also been shown that the use of fragility-modified activation barriers in the Arrhenius function account for the whole gamut of viscosity behavior of liquids. It is shown that fragility can be a universal scaling parameter to collapse all viscosity curves on to a master plot.
Resumo:
We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.