974 resultados para glacial drift deposits
Resumo:
This study evaluates two methods for estimating a soilís hydraulic conductivity: in-situ infiltration tests and grain-size analyses. There are numerous formulas in the literature that relate hydraulic conductivity to various parameters of the infiltrating medium, but studies have shown that these formulas do not perform well when applied to depositional environments that differ from those used to derive the formulas. Thus, there exists a need to specialize infiltration tests and related grain-size analyses for the Vashon advance outwash in the Puget Lowland. I evaluated 134 infiltration tests and 119 soil samples to find a correlation between grain-size parameters and hydraulic conductivity. This work shows that a constant-head borehole infiltration test that accounts for capillarity with alpha approximately 5m^-1 is an effective method for calculating hydraulic conductivity from our flow tests. Then, by conducting grain-size analysis and applying a multiple linear regression, I show that the hydraulic conductivity can also be estimated by log(K) = 1.906 + 0.102D_10 + 0.039D_60 - 0.034D_90 - 7.952F_fines. This result predicts the infiltration rate with a 95% confidence interval of 20 ft/day. The results of study are for application in the Puget Lowland.
Resumo:
Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).
Resumo:
Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for Fe, Mn and Al as well as a range of other chemical determinands known to affect metal solubility. Densities of metal-rich ochre deposit were determined for stream bed stone samples. Higher conductivities and concentrations of bicarbonate, alkalinity, Ca and Mg occurred on basalt than on schist. Despite higher Fe and Mn oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and ochre deposit densities only one third of those on schist overlain by humic soils. Neither rock nor soil type predicted Al concentrations, but pH and dissolved oxygen did. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist have resulted in elevated concentrations of metals and ochre deposit in surface waters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Investigations in Wright Valley, adjacent to the Transantarctic Mountains in East Antarctica, shed light on the question of whether high-latitude Pliocene climate was warm enough to cause widespread deglaciation of the East Antarctic craton with a concurrent Magellanic moorland-like environment. If Pliocene age diatoms, presently in glaciogenic deposits high in the Transantarctic Mountains, had come from seaways on the East Antarctic craton, an expanding Late Pliocene ice sheet must have first eroded them from marine sediments and then deposited the diatoms at their present high-altitude locations. This hypothetical expanding glacier would have had to have come through Wright Valley. Glacial drift sediments from the central Wright Valley were mapped, sampled, analyzed, and Ar-40/Ar-39 whole rock dated. Our evidence indicates that an East Antarctic outlet glacier has not expanded through Wright Valley, and hence cannot have overridden the Dry Valleys sector of the Transantarctic Mountains, any time in the past 3.8 myr. Rather, there was only moderate Pliocene expansion of local cola-based alpine glaciers and continuous cold-desert conditions in Wright Valley. Persistence of a cold-desert paleoenvironment implies that the sector of the East Antarctic Ice Sheet adjacent to Wright Valley has remained relatively stable without melting ablation zones since at least 3.8 Ma, in Early Pliocene time. A further implication is that Antarctic Ice Sheet behavior in the Pliocene was much like that in the Quaternary, when the ice sheet consisted of a stable, terrestrial core in East Antarctica and a dynamic, marine-based appendage in West Antarctica.
Resumo:
In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649-2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.
Resumo:
Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.
Resumo:
The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.
Resumo:
Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30' lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance of Pinus and Picea at about 14,000 BP (estimated!), there developed a mosaic of prairies and stands of Quercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene. The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.
Resumo:
During the "Polarstern"-expeditions ARK-IX/4 (1993) and ARK-XI/1 (1995), organised by the Alfred Wegener Institute (AWI), acoustic subbottom profiles (Parasound) have been collected in the Laptev Sea Shelf, Siberia. These data have been interpreted as an indicator of ice scours frequency and off-shore permafrost patterns. An additional acoustic profile data-base was available by the results of the expedition of the Federal Institute for Geosciences and Natural Resources (BGR) of the year 1994. The area of the expedition was located closer to the shelf, therefore supports a better understanding of ice scours frequency in shallower marine environments. The data-file consists of a 2930 km Parasound-traverse and has been subdivided into 586 working profiles. They are characterised by their location, number of ice scours, interpreted patterns of reflection and their extension and morphology. The data have been evaluated statistically and graphically and were presented in a map. Different patterns of sea floor reflection were established by different environments, outer influences (e.g. size of the icebergs, direction of the drift of icebergs) and the climatic history of the region. In the north-westerly region of the Laptev Sea at the continental slope of Severnaya Zemlya the sea floor in shallower depths has been ploughed intensely by recent icebergs. In some regions (40-60m), as an effect of intensely ploughing, the sea floor is hardly defined in acoustic profiles come along with relocation of marine deposits. Glacial diamiet deposits prevented the development of deep scours. Up to 355m deeper scours result from lower sea levels. The marginal north-easterly region of the Laptev Sea is characterised exclusively by this type of scour. Morphology and depth of these scours can be compared with those of the westerly Vilkitsky-Street so that similar conditions of development may be expected. Both, the north-easterly Laptev Sea and the Vilkitsky-Street, are not dominated by patterns ofrecent icebergs. In contrary the shelf-regions north-easterly ofthe Taimyr peninsula and north-westerly of the New Siberian Islands have been modified evidently by recent icebergs, which drifted with prevalent currents anticlockwise along the shelf edge of the Laptev Sea and cause the deepest scours of the whole region. The off-shore permafrost at the inner shelf regions has an important influence on the scours intensity. The permafrost layer can be recognised by the maximum depth of ice scours. It is represented by a Parasound reflector that can be made up for distances. The age of the ice scours cannot be determined absolutely by Parasound data but a relative order can be estimated whenever two scours are situated close to each other. When the Parasound-traverse ofthe expedition ARK-IX/4 (1993) (77°24'N 133°30'E-77°30'N 133°40'E) was repeated partially in expedition ARK-XI/l (1995) the ice scours of 1993 remained unchanged and uneroded and no new ice scours had been detected. It can be concluded that scours persist for a long time in the Laptev Sea, though after all with an average of 3 ice scours per kilometer there are not many at all in the Laptev Sea.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
This study was undertaken to determine the distribution and habitat requirements of many of the endangered and threatened plant species associated with the sand deposits of Illinois. Approximately 70 species of endangered and threatened plants are known to grow in these deposits. The habitat fidelity and natural community types were determined for 40 of these species that are restricted to these glacial drift sand habitats. Plant community types, associated species, moisture requirements, and other data concerning each of the plant species were determined by reviewing the pertinent literature, searching the Illinois Department of Natural Resources Natural Heritage Database, through discussions with botanists and natural heritage biologists, examination of herbarium specimens, and our studies of the vegetation of the Illinois sand deposits. Throughout the course of these studies, most of the nature preserves, state parks, and identified natural areas in the sand regions were visited on numerous occasions and vegetation surveys undertaken. The information presented in this paper could allow rare plant conservation in Illinois to become more proactive by encouraging the selection of sites where in situ conservation efforts could be conducted by state, local, and nongovernmental organizations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)