961 resultados para gingival fibroblast
Resumo:
This study investigates a potential role for TGF beta(1), in the pathogenesis of cyclosporin A-induced gingival overgrowth (CsA-OG). TGF beta(1) was localized immunohistochemically in the connective tissue of both normal gingiva and CsA-OG. Intense staining for TGF beta(1) was detected at the tips of the dermal papillae of the overgrown gingiva. In addition, fibroblasts derived from healthy gingiva and fibroblasts derived from CsA-OG were cultured both as monolayers or embedded in a 3D-collagen gel. Fibroblast activity was monitored in terms of protein and collagen production in the presence of (i) 1 ng/ml TGF beta(1), (ii) 500 ng/ml CsA, or (iii) 500 ng/ml CsA and 1 ng/ml TGF beta(1). In monolayer culture TGF beta(1) significantly increased protein and collagen production in all cell strains (p
Resumo:
Background and Objectives: Gingival fibroblasts play a significant role in the innate immune response of the periodontium to bacterial stimulation. A number of microorganisms and their by-products induce a host response that commonly leads to tissue destruction and periodontal disease progression. LL-37 is an antimicrobial peptide which has multiple roles in host defence including immunomodulation and wound-healing. We have investigated the role of LL-37 on the responsiveness of human gingival fibroblasts to microbial challenge from E. coli lipopolysaccharide (LPS) and P. gingivalis LPS, as well as exploring the direct effects of LL-37 on human gingival fibroblasts. Methods: The effect of LL-37 on bacterial LPS-induced expression of IL-6 and IL-8 by gingival fibroblasts was determined by ELISA. The influence of LL-37 on bacterial LPS-induced IκBα degradation in human gingival fibroblasts was investigated by western blot. The direct effects of LL-37 on modulating gingival fibroblasts gene expression were initially determined by DNA microarray analysis and subsequently confirmed by quantitative polymerase chain reaction (Q-PCR) and ELISA analysis of 9 selected genes. Results: Bacterial LPS-induced IL-8 and IL-6 production by human gingival fibroblasts were significantly reduced in the presence of LL-37 at concentrations in the range of 1-10 µg/ml (p<0.05). The presence of LL-37 at a concentration of 5 µg/ml led to a reduction in LPS-induced IκBα degradation by E. coli LPS (100 ng/ml) and P. gingivalis LPS (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, IL-24, IL-8, CCL2, and SOCS3 mRNA were significantly upregulated by LL-37 (p<0.05). LL-37 also significantly stimulated expression of IL-8, hepatocyte growth factor (HGF) and CXCL1 (p<0.05) at the protein level. Discussion: LL-37 plays an important role in the innate immune response due to its broad spectrum antimicrobial and immunomodulatory activity. The ability of LL-37 to directly regulate expression of a range of genes, central to the pathogenesis of periodontitis, identifies multiple roles for the peptide in host homeostasis.
Resumo:
Host defence peptides, including the cathelicidin LL-37, play an important role in mucosal immunity, functioning as both antimicrobial agents and modulators of the inflammatory response. In the current climate of antibiotic resistance, the idea of using naturally occurring antimicrobial peptides, or their synthetic mimetics, to combat oral infection is particularly appealing. Objectives: The aim of this study was to investigate the effects of parent LL-37, and two peptide mimetics (KR-12 and KE-18), on cytokine expression and response to bacterial challenge by gingival fibroblasts. Methods: KR-12 and KE-18 are peptide mimetics of the biologically active, mid-region sequence of LL-37. The effects of commercially available LL-37, KR-12 and KE-18 on gingival fibroblast response to E coli and P gingivalis LPS challenge, analysed by IL-6 and IL-8 expression, were determined in cell culture by ELISA. The direct effects of each peptide on IL-6, IL-8, CXCL-1 and HGF expression were also determined by ELISA. The MTT assay was used to evaluate peptide effects on fibroblast viability. Results: LL-37 and KE-18, but not KR-12, inhibited LPS induction of inflammatory cytokine expression and directly stimulated CXCL-1 production by fibroblasts. All 3 peptides stimulated production of IL-8 and HGF. Neither LL-37 nor KE-12 affected cell viability, while KE-18, at higher concentrations, induced cell death. Conclusions: Shorter, peptide mimetics of LL-37, in particular KE-18, retain the immunomodulatory effects of the parent molecule and possess excellent potential as therapeutic agents in the treatment of oral infections including periodontal disease.
Resumo:
Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.
Resumo:
The aim of this study was to determine adequate energy doses using specific parameters of LLLT to produce biostimulatory effects on human gingival fibroblast culture. Cells (3 10 4 cells/cm 2) were seeded on 24-well acrylic plates using plain DMEM supplemented with 10 fetal bovine serum. After 48-hour incubation with 5 CO2 at 37C, cells were irradiated with a InGaAsP diode laser prototype (LASERTable; 780 3 nm; 40mW) with energy doses of 0.5, 1.5, 3, 5, and 7J/cm 2. Cells were irradiated every 24h totalizing 3 applications. Twenty-four hours after the last irradiation, cell metabolism was evaluated by the MTT assay and the two most effective doses (0.5 and 3J/cm 2) were selected to evaluate the cell number (trypan blue assay) and the cell migration capacity (wound healing assay; transwell migration assay). Data were analyzed by the Kruskal-Wallis and Mann-Whitney nonparametric tests with statistical significance of 5. Irradiation of the fibroblasts with 0.5 and 3J/cm 2 resulted in significant increase in cell metabolism compared with the nonrradiated group (P 0.05). Both energy doses promoted significant increase in the cell number as well as in cell migration (P 0.05). These results demonstrate that, under the tested conditions, LLLT promoted biostimulation of fibroblasts in vitro. Copyright © 2012 Fernanda G. Basso et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as an important etiological factor for disease manifestation. Activation of transforming growth factor-beta signaling has been postulated as the main causative event for increased collagen production in OSF. Oral epithelium plays important roles in OSF, and arecoline has been shown to induce TGF-beta in epithelial cells. In an attempt to understand the role of areca nut constituents in the manifestation of OSF, we studied the global gene expression profile in epithelial cells (HaCaT) following treatment with areca nut water extract or TGF-beta. Interestingly, 64% of the differentially regulated genes by areca nut water extract matches with the TGF-beta induced gene expression profile. Out of these, expression of 57% of genes was compromised in the presence of ALK5 (T beta RI) inhibitor and 7% were independently induced by areca nut, highlighting the importance of TGF-beta in areca nut actions. Areca nut water extract treatment induced p-SMAD2 and TGF-beta downstream targets in HaCaT cells but not in human gingival fibroblast cells (hGF), suggesting epithelial cells could be the source of TGF-beta in promoting OSF. Water extract of areca nut consists of polyphenols and alkaloids. Both polyphenol and alkaloid fractions of areca nut were able to induce TGF-beta signaling and its downstream targets. Also, SMAD-2 was phosphorylated following treatment of HaCaT cells by Catechin, Tannin and alkaloids namely Arecoline, Arecaidine and Guvacine. Moreover, both polyphenols and alkaloids induced TGF-beta 2 and THBS1 (activator of latent TGF-beta) in HaCaT cells suggesting areca nut mediated activation of p-SMAD2 involves up-regulation and activation of TGF-beta. These data suggest a major causative role for TGF-beta that is induced by areca nut in OSF progression.
Resumo:
Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.
Resumo:
No consensus has yet been reached to associate oral bacteria conclusively with the etio-pathogenesis of bisphosphonate-induced osteonecrosis of the jaw (BONJ). Therefore, the present study examined the effects of oral bacteria on the development of BONJ-like lesions in a mouse model. In the pamidronate (Pam)-treated mice, but not control non-drug-treated mice, tooth extraction followed by oral infection with Fusobacterium nucleatum caused BONJ-like lesions and delayed epithelial healing, both of which were completely suppressed by a broad-spectrum antibiotic cocktail. Furthermore, in both in vitro and in vivo experiments, the combination of Pam and Fusobacterium nucleatum caused the death of gingival fibroblasts (GFs) and down-regulated their production of keratinocyte growth factor (KGF), which induces epithelial cell growth and migration. Therefore, in periodontal tissues pre-exposed to bisphosphonate, bacterial infection at tooth extraction sites caused diminished KGF expression in GFs, leading to a delay in the epithelial wound-healing process that was mitigated by antibiotics.
Resumo:
Objective: The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals. Materials and methods: Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR. Results: No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0. 05), DNMT3a (p < 0. 05), and JMJD3 (p < 0. 01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts. Conclusion: P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events. Clinical relevance: The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies. © 2012 Springer-Verlag.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Periodontitis comprises a group of multifactorial diseases in which periodontopathogens accumulate in dental plaque and trigger host chronic inflammatory and immune responses against periodontal structures, which are determinant to the disease outcome. Although unusual cases of non-inflammatory destructive periodontal disease (NIDPD) are described, their pathogenesis remains unknown. A unique NIDPD case was investigated by clinical, microbiological, immunological and genetic tools. The patient, a non-smoking dental surgeon with excessive oral hygiene practice, presented a generalized bone resorption and tooth mobility, but not gingival inflammation or occlusion problems. No hematological, immunological or endocrine alterations were found. No periodontopathogens (A. actinomycetemcomitans, P. gingivalis, F. nucleatum and T. denticola) or viruses (HCMV, EBV-1 and HSV-1) were detected, along with levels of IL-1 beta and TNF-alpha in GCF compatible with healthy tissues. Conversely ALP, ACP and RANKL GCF levels were similar to diseased periodontal sites. Genetic investigation demonstrated that the patient carried some SNPs, as well HLA-DR4 (*0404) and HLA-B27 alleles, considered risk factors for bone loss. Then, a less vigorous and diminished frequency of toothbrushing was recommended to the patient, resulting in the arrest of alveolar bone loss, associated with the return of ALP, ACP and RANKL in GCF to normality levels. In conclusion, the unusual case presented here is compatible with the previous description of NIDPD, and the results that a possible combination of excessive force and frequency of mechanical stimulation with a potentially bone loss prone genotype could result in the alveolar bone loss seen in NIDPD.
Resumo:
OBJECTIVE Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. MATERIALS AND METHODS Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. RESULTS Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. CONCLUSION Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface.
Resumo:
Objective: To investigate the potential effects of IFN-y on the responsiveness of human gingival fibroblasts to bacterial challenge.
Design :mRNA and protein expression of CD14, TLR2 and TLR4 in human gingival fibroblasts was detected by quantitative polymerase chain reaction (Q-PCR) and flow cytometry. The effect of preincubation with IFN-y on subsequent bacterial LPS-induced expression of IL-6 and IL-8 by gingival fibroblasts was determined by ELISA. Bacterial LPS-induced IκBα degradation in human gingival fibroblasts was investigated by western blot.
Results: Human gingival fibroblasts express CD14, TLR2 and TLR4 mRNAs. IFN-y, but not IL-1B, induced mRNA expression of all three receptors and the expression of membrane bound CD14 protein. Pre-incubation of fibroblasts with IFN-y and subsequent stimulation with Escherichia coli LPS or Porphyromonas gingivalis LPS led to increased production of IL-6 and IL-8. LPS-induced pro-inflammatory cytokine production was abrogated by a blocking antibody to CD14. Both E. coli LPS and P. gingivalis LPS induced IκBα degradation in human gingival fibroblasts.
Conclusion: Our data indicate that IFN-y primes human gingival fibroblasts, through the upregulation of CD14 expression, which results in increased responsiveness to bacterial LPS challenge, as determined by pro-inflammatory cytokine production.
Resumo:
Background: Very limited information is available from in vivo studies about whether smoking and/or nicotine affect gingival tissues in the absence of plaque. The purpose of this study is to evaluate the effect of the systemic administration of nicotine in the proliferation and counting of fibroblast-like cells in the gingival tissue of rats.Methods: Thirty adult male Wistar rats were randomly assigned into two groups to receive subcutaneous injections of a saline solution (control group = group C) or nicotine solution (group N; 3 mg/kg) twice a day. The animals were euthanized 37, 44, or 51 days after the first subcutaneous injection. Specimens were routinely processed for serial histologic sections. Five fields of view in the connective tissue adjacent to the gingival epithelium and above the alveolar bone crest of the maxillary first molar were selected for the counting of fibroblast-like cells. Data were statistically analyzed (P<0.05).Results: The intergroup analysis detected a lower number of fibroblast-like cells in group N compared to group C on days 37 (2.65 +/- 1.41 and 6.67 +/- 3.25, respectively), 44 (2.70 +/- 1.84 and 8.57 +/- 2.37, respectively), and 51(2.09 +/- 1.41 and 7.49 +/- 2.60, respectively) (P<0.05). The quantification of fibroblast-like cells showed no significant difference (P >0.05) in the intragroup analysis of control and nicotine throughout experimental periods. In the intergroup analysis, group N had reduced proliferating cell nuclear antigen positive fibroblasts compared to group C in all periods (P<0.05).Conclusion: The daily systemic administration of nicotine negatively affected, in vivo, the number and proliferation of fibroblast-like cells in the gingival tissue of rats. J Periodontol 2011;82:1206-1211.