47 resultados para gibberellins
Resumo:
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Resumo:
Shoot elongation of Hancornia speciosa, an endangered tree from the Brazilian savannah ""Cerrado"", is very slow, thus limiting nursery production of plants. Gibberellins (GAs) A(1), A(3), and A(5), and two inhibitors of GA biosynthesis, trinexapac-ethyl and ancymidol were applied to shoots of Hancornia seedlings. GA(1) and GA(3) significantly stimulated shoot elongation, while GA(5) had no significant effect. Trinexapac-ethyl and ancymidol, both at 100 A mu g per seedling, inhibited shoot elongation up to 45 days after treatment, though the effect was statistically significant only for ancymidol. Somewhat surprisingly, exogenous GA(3) more effectively stimulated shoot elongation in SD-grown plants, than in LD-grown plants. The results from exogenous application of GAs and inhibitors of GA biosynthesis imply that Hancornia shoot growth is controlled by GAs, and that level of endogenous growth-active GAs is likely to be the limiting factor for shoot elongation in Hancornia. Application of GAs thus offer a practical method for nursery production of Hancornia seedlings for outplanting into the field.
Quantitative distribution of gibberellins and indole-acetic acid in pea (Pisum sativum L.) seedlings
Resumo:
The objective was to determine the distribution in pea seedling of GA (by thin layer chromatography) and IAA (by HPLC). Three samples of 30 7/day-old seedlings were sectioned into: apical meristem + plumular hook; stem elongation zone; stem non-elongation zone; cotyledons; root non-elongation zone; root tip. The material was frozen in liquid N and stored at -80 degrees C. The stem elongation zone, the apical meristem+plumular hook and the root tip had low IAA, whereas the stem non-elongation zone and root non-elongation zone had high IAA content. The stem elongation zone and apical meristem plumular hook had high GA, while root non-elongation zone had the lowest GA content.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trichome development is dependent on gibberellin (GA) signaling in Arabidopsis thaliana. Using the GA-deficient mutant ga1–3, the GA-response mutant spy-5, and uniconazol (a GA-biosynthesis inhibitor), we show that the GA level response correlates positively with both trichome number and trichome branch number. Two genes, GL1 and TTG, are required for trichome initiation. In ga1–3, coexpression of GL1 and R, the maize TTG functional homolog, under control of the constitutive 35S promoter, restored trichome development, whereas overexpression of neither GL1 nor R alone was sufficient to significantly suppress the glabrous phenotype. We next focused on GL1 regulation by GAs. In the double mutant the gl1–1 glabrous phenotype is epistatic to the spy-5 phenotype, suggesting that GL1 acts downstream of the GA signal transduction pathway. The activity of a β-glucuronidase reporter gene driven by the GL1 promoter was decreased in the wild type grown on uniconazol and showed a clear GA-dependent activation in ga1–3. Finally, quantification of GL1 transcript levels by reverse transcriptase-polymerase chain reaction demonstrated that relative to wild type, ga1–3 plants contained less transcript. These data support the hypothesis that GAs induce trichome development through up-regulation of GL1 and possibly TTG genes.
Resumo:
El uso de microorganismos como inoculantes para incrementar la disponibilidad y toma de nutrientes por parte de los cultivos, es una nueva tecnología que ha dado buenos resultados, observándose un incremento en la emergencia, vigor, mayor desarrollo en la parte aérea y de raíces, registrándose aumentos considerables de los rendimientos en cultivos de interés comercial. Esto es debido a que los microorganismos PGPR (Plant Growth promoting rhizobacteria) sintetizan ciertas sustancias reguladoras del crecimiento como giberelinas, citoquininas y auxinas; las cuales estimulan la densidad y longitud de los pelos radicales, aumentando así la cantidad y longitud de las raíces de los vegetales. Así, se incrementa la capacidad de absorción de agua y nutrientes, haciendo que las plantas sean más vigorosas, productivas y tolerantes a condiciones climáticas adversas, como sequías o heladas. Otro factor benéfico es que ciertos microorganismos solubilizan nutrientes poco móviles en el suelo como el caso del fósforo, segundo nutriente, después del nitrógeno en importancia para el crecimiento de los cultivos. Estos microorganismos también tienen una función muy importante en el control natural de agentes patógenos, a través de la inducción del sistema de defensa en las plantas, aumentando su resistencia a enfermedades, a través de la producción de compuestos bacterianos como antibióticos y sideróforos. Los variados mecanismos mediante los cuales la acción PGPR se lleva a cabo no son plenamente conocidos y, por lo tanto, es necesario determinar con precisión su efecto particular en la biología de la planta beneficiada. Las plantas aromáticas y medicinales inoculadas con microorganismos (rizobacterias) registran un incremento en varios parámetros de crecimiento vegetal (peso fresco parte aérea, peso seco de raíz, número de hojas, etc) y en el rendimiento de aceite esencial (AE). El aumento de la síntesis, y la variación de los porcentajes relativos de los componentes principales de AE en plantas aromáticas, como efecto de la inoculación, podría considerarse como una respuesta defensiva de la planta frente a la colonización de microorganismos dado que varios AE poseen propiedades antimicrobianas. El incremento de estos metabolitos también se ha registrado como respuesta frente a la herbivoría. En el presente proyecto se propone dilucidar la existencia de una relación entre las defensas inducidas por rizobacterias con la producción de metabolitos secundarios en plantas aromaticas y medicinales. The use of microorganisms as inoculants to increase the availability and nutrient uptake by crops, is a new technology that has been successfully applied, with an increase in the emergence, vigor, greater development in the shoot and roots, recording significant increases in yields of crop with commercial interest. This is because microorganisms PGPR (Plant Growth Promoting rhizobacteria) synthesize certain growth regulating substances such as gibberellins, cytokinins and auxins, which stimulate the density and length of root hairs, increasing the number and length of roots. Thus, increase the capacity of absorbing water and nutrients, make the plants more vigorous, productive and tolerant to adverse climatic conditions such as drought or frost.Another beneficial factor is that some microorganisms solubilize nutrients mobile in the soil as the case of phosphorus, second nutrient after nitrogen important for plant growth. These organisms also have an important role in the natural control of pathogens through the induction of the plants defense system, increasing their resistance to disease through the production of compounds such as antibiotics and bacterial siderophores. The various mechanisms by which PGPR action takes place are not fully known and therefore it is necessary to accurately determine its particular effect on the biology of the specific plant benefit. Aromatic and medicinal plants inoculated with microorganisms (rhizobacteria) recorded an increase in several parameters of plant growth (shoot fresh weight, root dry weight, leaf number, etc) and essential oil yield (AE). The increase in the biosynthesis, and changes in the relative percentages of the main components of AE in aromatic plants inoculated with rizobacterias, could be regarded as a plant defense response against microbial colonization, since several AE have antimicrobial properties. The increase of these metabolites have also been recorded as a response to herbivory.
Resumo:
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.
Resumo:
Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.
Resumo:
Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal.
Resumo:
Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.
Resumo:
The remarkable plasticity of plant ontogeny is shaped by hormone pathways, which not only orchestrate intrinsic developmental programs, but also convey environmental inputs. Several classes of plant hormones exist, and among them auxin, brassinosteroid and gibberellin are central for the regulation of growth in general and of cell elongation in particular. Various growth phenomena can be modulated by each of the three hormones, in a sometimes synergistic fashion, suggesting physiological redundancy and/or crosstalk between the different pathways. Whether this means that they target a common and unique transcriptome module, or rather separate growth-promoting transcriptome modules, remains unclear, however. Nevertheless, while surprisingly few molecular mediators of direct crosstalk in the proper sense have been isolated, evidence is accumulating for complex cross-regulatory relations between hormone pathways at the level of transcription, as exemplified in root meristem growth. The growing number of available genome sequences from the green lineage offers first glimpses at the evolution of hormone pathways, which can aid in understanding the multiple relationships observed between these pathways in angiosperms. The available analyses suggest that auxin, gibberellin and brassinosteroid signalling arose during land plant evolution in this order, correlating with increased morphological complexity and possibly conferring increased developmental flexibility.
Resumo:
Changes in the activities of oxidative enzymes (indole acetic acid oxidase, peroxidase and catalase), endogenous hormones (gibberellic acid (GA3), indole acetic acid (IAA), abscisic acid (ABA) and cytokinins (AsZeatin), photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), total carbohydrates, total soluble sugars, amino acid proline and vegetative growth parameters were used as indicators to explain the physiological role of the growth retardant prohexadione-calcium on Vicia faba seedlings 40 days after sowing under salinity stress for 30 days. The obtained results show that soaking faba bean seeds prior to sowing at different concentrations of prohexadione-calcium (0, 10, 20 and 30 ppm) significantly increased the activities of indole acetic acid oxidase (IAA-oxidase) and peroxidase enzymes, but decreased the catalase enzyme activity as compared with their respective control. Application of prohexadione-Ca caused markedly decreases in the endogenous contents of gibberellins and indole acetic acid (IAA) but increased the levels of natural growth inhibitor abscisic acid (ABA) and cytokinins in the shoots of faba bean seedlings. All the prohexadione-Ca concentrations increased the contents of amino acid proline, photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), total carbohydrates and total soluble sugars in faba bean seedlings grown under salt stress. Application of prohexadione-Ca decreased significantly seedling height and shoot fresh weight but significantly increased shoot dry weight.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
O muricizeiro (Byrsonima cydoniifolia A. Juss) é árvore de pequeno porte que apresenta múltiplas potencialidades na produção de alimentos, de lenha e na medicina popular. Sua reprodução é por sementes que estão contidas em endocarpo pétreo constituindo o pirênio, popularmente denominado caroço, que ocasiona baixa e desuniforme taxa de germinação. O objetivo deste trabalho foi avaliar os efeitos do estádio de desenvolvimento da semente, da temperatura, da integridade do endocarpo e do ácido giberélico na germinação dessa espécie. Para tanto, três experimentos foram instalados em delineamentos inteiramente casualizados. O primeiro considerou dois estádios de maturação do fruto, dois estados de integridade do endocarpo e duas concentrações de ácido giberélico (GA3); o segundo envolveu a utilização de envelhecimento acelerado e a presença ou ausência de ácido giberélico (GA3), e o terceiro, dois estádios de maturação do fruto, duas concentrações de ácido giberélico (GA3) e presença ou ausência de aeração. Os resultados obtidos permitiram concluir que as sementes apresentaram melhor qualidade fisiológica quando oriundas de frutos maduros e que sofreram abscisão natural. A pré-embebição de pirênios íntegros em ácido giberélico, na concentração de 1 g.L-1 por 24 horas sob alternância de temperatura de 25/35 ºC, favoreceu a germinação. Resultados satisfatórios ocorreram sob alternância de temperatura em câmara de germinação ou a céu aberto, em substrato constituído por areia lavada com fornecimento de água no período mais quente do dia.
Resumo:
O trabalho avaliou os efeitos de reguladores vegetais sobre a quebra da dominância apical de mamoeiro (Carica papaya L. cv. Improved Sunrise Solo). A aplicação dos reguladores vegetais foi iniciada quando as plantas tinham seis meses de idade, totalizando três aplicações, a intervalos de sete dias, constando dos seguintes tratamentos: T1- água (testemunha); T2- GA3 250 mg L-1; T3- GA3 500 mg L-1; T4- benziladenina (BA) 250 mg L-1; T5- BA 500 mg L-1; T6- GA3 125 mg L-1 + BA 125 mg L-1; T7- GA3 250 mg L-1 + BA 250 mg L-1. Esses tratamentos foram acompanhados da remoção ou não da gema apical. Os resultados mostraram que plantas tratadas com GA3 + BA a 125 e 250 mg L-1, com e sem a remoção da gema apical, apresentaram maior número de brotações que a testemunha, a qual não apresentou nenhuma brotação das gemas laterais.