116 resultados para gibberellin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review aimed to show the use of gibberellin in floriculture. In this context, it should be noted that the benefit of the activity of the gibberellins has brought major advances in the field of physiology. Its use is one of the most important tools for the development of agriculture. Thus, the study concluded that the use of gibberellins has been increasingly used by producers and is also a vast important subject that may help in increasing the production of flowers if the farms are dedicated to this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mangoes in the Brazilian semi-arid stands out in the national scenario due to high yields and fruit quality, and also to the possibility of all-year production taking advantage of the climatic conditions as well as management technique (irrigation, pruning and growth regulators application) for plant growth and blossom control. Paclobutrazol soil drench applied is normally used for production management of mangoes. This research deals with the evaluation of the effect of foliar applied growth regulators to mango, cultivar 'Kent', as regard to their efficiency for blossom management, in order to allow off season mango production. Three growth regulators (prohexadione-Ca, trinexapac-ethyl and chlormequat chloride) were foliar applied, at two dosages and compared to paclobutrazol applied as soil-drench. In order to compare the effects of the treatment, data were recorded related to panicle emission (percentage and length), period of time until blossom and production, yield (number and plant weight) and post-harvest quality of the fruit (total soluble solids, titratable acidity, pH, firmness, flesh and skin color and appearance). The results showed that prohexadione-Ca and chlormequat chloride induced a 15-day early harvest, while paclobutrazol, alone or combined with prohexadione-Ca, allow to harvest 25 days in advance, when compared to trinexapac-ethyl and control trees. Growth regulators foliar applied and paclobutrazol applied as soil-drench delayed mangoes fruit ripening in post-harvest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of pulsing with different concentrations of gibberellin plus benzyladenine (GA(4+7) + BA), a proprietary mixture of GA(4+7) plus BA in a commercial floral preservative (GA(4+7) + BA + preservative), or a propriety mixture of sugar plus acidifier developed for bulbous flowers (floral bulb preservative) were studied on postharvest performance and quality of cut lily (Lilium hybrids) and gladiolus ( Gladiolus hybrids) flowers. Pulsing of cut stems of lily with GA(4+7) + BA at 5 or 2 mL.L-1 GA(4+7) + BA + preservative for 20 hours at 3 +/- 1 degrees C extended the vase life and controlled leaf chlorosis of 'Cobra'oriental lily and 'Cappuccino'and Pot Corn'asiatic lily. Cut 'Orange Art'asiatic lily performed best when pulsed with GA(4+7) + BA at 10 mg.L-1. For cut gladiolus, pulsing with GA(4+7) + BA at 10 mg.L-1 extended the vase life of 'Alice', 'Mammoth', and 'Passion', while 'Scarlet'had the longest vase life when pulsed with 5 mg.L-1 GA(4+7) + BA. GA(4+7) + BA + preservative also extended the vase life and controlled leaf chlorosis, but the floral bulb preservative had no effect on vase life extension or preventing leaf chlorosis of lilies. Gladiolus cultivars had no or minor leaf chlorosis during vase period. Overall, overnight pulsing with GA(4+7) + BA + or GA(4+7) + BA + preservative extended the vase life and prevented leaf chlorosis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gibberellin (GA) is a growth promoting hormone implicated in regulating a diversity of plant processes. This dissertation examines the role of GA metabolic and signaling genes in woody plant growth and development. Transgenic modifications, expression analysis, physiological/biochemical assays, biometric measurements and histological analysis were used to understand the regulatory roles these genes play in the model woody plant, Populus. Our results highlight the importance of GA regulatory genes in woody perennial growth, including: phenology, wood formation, phenotypic plasticity, and growth/survival under field conditions. We characterize two putative Populus orthologs of the SHORT INTERNODES (SHI) gene from Arabidopsis, a negative regulator of GA signaling. RNAi-mediated suppression of Populus SHI-like genes increased several growth-related traits, including extent of xylem proliferation, in a dose-dependent manner. Three Populus genes, sharing sequence homology to the positive regulator of GA signaling gene PHOTOPERIOD-RESPONSIVE 1 (PHOR1) from Solanum, are up-regulated in GA-deficient and insensitive plants suggesting a conserved role in GA signaling. We demonstrate that Populus PHOR1-like genes have overlapping and divergent function(s). Two PHOR1-like genes are highly expressed in roots, predominantly affect root growth (e.g., morphology, starch quantity and gravitropism), and induced by short-days (SD). The other PHOR1-like gene is ubiquitously expressed with a generalized function in root and shoot development. The effects of GA catabolic and signaling genes on important traits (e.g., adaptive and productivity traits) were studied in a multi-year field trial. Transgenics overexpressing GA 2-oxidase (GA2ox) and DELLA genes showed tremendous variation in growth, form, foliage, and phenology (i.e., vegetative and reproductive). Observed gradients in trait modifications were correlated to transgene expression levels, in a manner suggesting a dose-dependent relationship. We explore GA2ox and DELLA genes involvement in mediating growth responses to immediate short-term drought stress, and SD photoperiods, signaling prolonged periods of stress (e.g., winter bud dormancy). GA2ox and DELLA genes show substantial up-regulation in response to drought and SDs. Transgenics overexpressing homologs of these genes subjected to drought and SD photoperiods show hypersensitive growth restraint and increased stress resistances. These results suggest growth cessation (i.e., dormancy) in response to adverse conditions is mediated by GA regulatory genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tef [Eragrostis tef (Zucc.) Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA) inhibitors particularly paclobutrazol (PBZ) on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.). The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield) that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active gibberellins (GAs) are endogenous factors that regulate plant growth and development in a dose-dependent fashion. Mutant plants that are GA deficient, or exhibit reduced GA responses, display a characteristic dwarf phenotype. Extragenic suppressor analysis has resulted in the isolation of Arabidopsis mutations, which partially suppress the dwarf phenotype conferred by GA deficiency and reduced GA-response mutations. Here we describe detailed studies of the effects of two of these suppressors, spy-7 and gar2–1, on several different GA-responsive growth processes (seed germination, vegetative growth, stem elongation, chlorophyll accumulation, and flowering) and on the in planta amounts of active and inactive GA species. The results of these experiments show that spy-7 and gar2–1 affect the GA dose-response relationship for a wide range of GA responses and suggest that all GA-regulated processes are controlled through a negatively acting GA-signaling pathway.