990 resultados para germ cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germ cell mutagens are currently classified into three categories in the German List of MAK- and BAT-Values. These categories have been revised and extended in analogy to the new categories for carcinogenic chemicals. Germ cell mutagens produce heritable gene mutations, and heritable structural and numerical chromosome aberrations in germ cells. The original categories 1 and 2 for germ cell mutagens remained unchanged. Two new categories 3 A and 3 B are proposed for chemicals which are suspected to be germ cell mutagens. A new category 5 is proposed for germ cell mutagens with low potency which contribute negligibly to human genetic risk provided the MAK value is observed. The following categories are presented for further discussion. 1. Germ cell mutagens which have been shown to increase the mutant frequency among the progeny of exposed humans. 2. Germ cell mutagens which have been shown to increase the mutant frequency among the progeny of exposed animals. 3 A. Substances which have been shown to induce genetic damage in germ cells of humans or animals, or which are mutagenic in somatic cells and have been shown to reach the germ cells in their active forms. 3 B. Substances which are suspected of being germ cell mutagens because of their genotoxic effects in mammalian somatic cells in vivo or, in exceptional cases in the absence of in vivo data, if they are clearly mutagenic in vitro and structurally related to in vivo mutagens. 4. not applicable (Category 4 was introduced for carcinogenic substances with nongenotoxic modes of action. By definition, germ cell mutagens are genotoxic. Therefore, a Category 4 for germ cell mutagens cannot exist.) 5. Germ cell mutagens, the potency of which is considered to be so low that, provided the MAK value is observed, their contribution to genetic risk is expected not to be significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of FSH and diurnal testosterone rhythms in specific germ cell transformations during spermatogenesis were investigated using DNA flow cytometry and morphometry of the seminiferous epithelium of the adult male bonnet monkey (Macaca radiata), the endogenous hormone levels of which were altered by two different protocols. (1) Active immunization of five monkeys for 290 days using ovine FSH adsorbed on Alhydrogel resulted in the neutralization of endogenous FSH, leaving the LH and diurnal testosterone rhythms normal. (2) Desensitization of the pituitary gonadotrophs of ten monkeys by chronically infusing gonadotrophin-releasing hormone analogue, buserelin (50 micrograms/day release rate), via an Alzet pump implant (s.c.) led to a 60-80% reduction in LH and FSH as well as total abolition of testosterone rhythms. The basal testosterone level (3.3 +/- 2.0 micrograms/l), however, was maintained in this group by way of an s.c. testosterone silicone elastomer implant. Both of the treatments caused significant (P < 0.01) nearly identical reduction in testicular biopsy scores, mitotic indices and daily sperm production rates compared with respective controls. The germ cell DNA flow cytometric profiles of the two treatment groups, however, were fundamentally different from each other. The pituitary-desensitized group exhibited a significant (P < 0.001) increase in 2C (spermatogonial) and decrease in 1C (round spermatid) populations while S-phase (preleptotene spermatocytes) and 4C (primary spermatocytes) populations were normal, indicating an arrest in meiosis caused presumably by the lack of increment in nocturnal serum testosterone. In contrast, in the FSH-immunized group, at day 80 when the FSH deprivation was total, the primary block appeared to be at the conversion of spermatogonia (2C) to cells in S-phase and primary spermatocytes (4C reduced by > 90%). In addition, at this time, although the round spermatid (1C) population was reduced by 65% (P < 0.01) the elongate spermatid (HC) population showed an increase of 52% (P < 0.05). This, taken together with the fact that sperm output in the ejaculate is reduced by 80%, suggests a blockade in spermiogenesis and spermiation. Administration of booster injections of oFSH at time-points at which the antibody titre was markedly low (at days 84 and 180) resulted in a transient resurgence in spermatogenesis (at day 180 and 228), and this again was blocked by day 290 when the FSH antibody titre increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We had earlier identified a 60 kDa nuclear lamin protein (lamin(g)) unique to the germ cells of rat testis which was subsequently shown to be antigenically conserved in germ cells of grasshopper, rooster, frog and plants. We have now obtained eight monoclonal antibodies in mouse against this lamin(g) antigen. While all the eight Mabs reacted with lamin(g) antigen in an immunoblot analysis, only three Mabs (A(11)C(7), A(11)D(4), C1F7) showed strong reactivity in the immunofluorescence analysis of the germ cells. The Mabs A(11)C(7) and A(11)D(4) showed a slight cross-reactivity with rat liver lamin B. Indirect immunofluorescence analysis of pre-meiotic, meiotic and post-meiotic germ cells with Mabs have shown that while the lamin(g) is localized in the lamina structures of spermatogonia and round spermatids, it is localized to the phase dense regions of pachytene spermatocytes which is in conformity with our previous observations using rabbit polyclonal antibodies. The localization of the antigen in the germ cells was also confirmed by immunohistochemical staining of the thin sections of seminiferous tubules. By immunostaining the surface spread pachytene spermatocytes, the antigen was further localized to the telomeric ends of the paired homologous chromosomes. Using anti-somatic lamin B antibodies, we have also demonstrated the absence of somatic lamins in meiotic and post-meiotic germ cells. The lamina structure of pre-meiotic spermatogonial nucleus contains both somatic lamin B and lamin(g) as evidenced by immunofluorescence studies with two differently fluorochrome labelled anti-lamin B and anti-lamin(g) antibodies. The selective retention of lamin(g) in the pachytene spermatocytes is probably essential for anchoring the telomeric ends of the paired chromosomes to the inner nuclear membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PROBLEM: It is yet to be determined clearly whether the two hormones FSH and T act synergistically in the same cell type-the Sertoli cells-to control overall spermatogenesis or influence independently the transformation of specific germ cell types during spermatogenesis in the adult mammal. METHOD: Adult male bonnet monkeys specifically deprived of either FSH or LH using immunoneutralization techniques were monitored for changes in testicular germ cell transformation by DNA flow cytometry. RESULTS: FSH deprivation caused a significant reduction (>40%; P < 0.05) in [H-3] thymidine incorporation into DNA of proliferating 2C (spermatogonial) cells, a marked inhibition (>50%) in the transformation of 2C to primary spermatocytes (4C) and a concomitant, belated reduction (50%) in the formation of round spermatids (1C). In contrast, specific LH/T deprivation led to an immediate arrest in the meiotic transformation of 4C to 1C/HC leading to an effective and significant block (<90%; P < 0.01) in sperm production. CONCLUSION: Thus, LH rather than FSH deprivation has a more pronounced and immediate effect as the former primarily blocks meiosis (4C --> 1C/HC) which controls production of spermatids. These data provide evidence for LH/T and FSH regulating spermatogenic process in the adult primate by primarily acting at specific germ cell transformation steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Bleomycin pulmonary toxicity (BPT) has been known since the early clinical trials of bleomycin in the 1960s. Postulated risk factors include cumulative bleomycin dose, reduced glomerular filtration rate (GFR), raised creatinine, older age and supplemental oxygen exposure.