33 resultados para geosynthetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of clean drinking water in any community is absolutely vital if we as the consumers are to sustain a life of health and wellbeing. Suspended particles in surface waters not only provide the means to transport micro-organisms which can cause serious infections and diseases, they can also affect the performance capacity of a water treatment plant. In such situations pre-treatment ahead of the main plant is recommended. Previous research carried out using non-woven synthetic as a pre-filter materials for protecting slow sand filters from high turbidity showed that filter run times can be extended by several times and filters can be regenerated by simply removing and washing of the fabric ( Mbwette and Graham, 1987 and Mbwette, 1991). Geosynthetic materials have been extensively used for soil retention and dewatering in geotechnical applications and little research exists for the application of turbidity reduction in water treatment. With the development of new materials in geosynthetics today, it was hypothesized that the turbidity removal efficiency can be improved further by selecting appropriate materials. Two different geosynthetic materials (75 micron) tested at a filtration rate of 0.7 m/h yielded 30-45% reduction in turbidity with relatively minor head loss. It was found that the non-woven geotextile Propex 1701 retained the highest performance in both filtration efficiency and head loss across the varying turbidity ranges in comparison to other geotextiles tested. With 5 layers of the Propex 1701 an average percent reduction of approximately 67% was achieved with a head loss average of 4mm over the two and half hour testing period. Using the data collected for the Propex 1701 a mathematical model was developed for predicting the expected percent reduction given the ability to control the cost and as a result the number of layers to be used in a given filtration scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of triaxial compression tests on sand reinforced with different types of geosynthetics in different layer configurations to study the effect of quantity of reinforcement and tensile strength of the geosynthetic material on the mechanical behavior of geosynthetic-reinforced sand. The reinforcement types used are woven geotextile, geogrid, and polyester film. The layer configurations used are two, three, four, and eight horizontal reinforcing layers in a triaxial test sample. From the triaxial tests, it is found that the geosynthetic reinforcement imparts cohesive strength to otherwise cohesionless sand. The effect of reinforcement on the friction angle was found to be insignificant. The magnitude of imparted apparent cohesion is found to depend not only on the tensile strength of the geosynthetic material but also the surface roughness changes during loading. Special triaxial tests using rice flour as the reinforced medium, microscopic images, and surface roughness studies revealed the effect of indent formation on the surface of polyester film, which was the reason for the unusually high strength exhibited by the sand reinforced with polyester film.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the laboratory investigation performed on clay beds reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials are reported in this paper. To use bamboo effectively, three-dimensional cells (similar to geocells) and two-dimensional grids (similar to geogrids) are formed using bamboo (termed bamboo cells and bamboo grids, respectively). The performance of clay beds reinforced with bamboo cells and bamboo grids is compared with that of clay beds reinforced with geocells and geogrids. The bearing capacity of the clay bed increased by six times when a combination of geocell and geogrid was used. The ultimate bearing capacity of the clay bed reinforced with bamboo cell and bamboo grid was found to be 1.3 times more than that of clay bed reinforced with geocell and geogrid. In addition, substantial reduction in the footing settlement and the surface deformation was observed. The tensile strength and surface roughness of bamboo were found to be nine times and three times, respectively, higher than geocell materials. The bamboo was treated chemically to increase its durability. Although the performance of bamboo was reduced by 15-20% after the chemical treatment, its performance was better than its commercial counterparts. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major aspect in geosynthetics creep analysis is the load level applied to the specimen, usually referred as a percentage of the geosynthetic ultimate tensile strength (UTS). Since both tensile and creep standard tests are performed with in-isolation specimens, they may not reproduce the possibly significant effect of soil-geosynthetic interaction. A new creep testing machine was recently developed and successfully addressed this concern. However, further developments allowed tensile tests to be performed in the same conditions used in nonconventional creep ones. This paper presents the results of nonconventional tensile tests performed with a woven biaxial polyester geogrid. They were used to define its UTS in the same conditions employed in creep tests performed with the new equipment. Despite changes in tensile curves shapes were found, the UTS from confined, accelerated and confined-accelerated tensile tests were quite similar to those obtained with standard tensile test procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"January 1996."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview of the design and performance of geosynthetics in composite barrier systems for biopiles used to remediate hydrocarbon-contaminated soil at Casey Station, Antarctica, is presented. Seven instrumented biopiles were constructed over three field seasons. To minimize the risk of hydrocarbon migration to groundwater, composite barrier systems were used (each using different combinations of geosynthetic clay liners (GCLs), high density polyethylene (HDPE) geomembranes (GMB), and geotextiles (GTXs)). One biopile used a co-extruded geomembrane (HDPE with an ethylene vinyl alcohol (EVOH) core). The liner system was subject to a combination of coupled phenomena that could interact and affect the GMB-GCL composite barrier performance. The exposure conditions involved potential freeze-thaw cycling, hydration-desiccation cycles, cation exchange, direct and diffusive exposure to hydrocarbons. The effect of these phenomena was investigated by monitoring GCL and GMB sacrificial coupons. GCL coupons were placed between the main GCL component and the main geomembrane component of the composite liner and GMB coupons placed between the main GMB sheet and the GTX protection layer. Coupons were exhumed from the biopiles each year. The exhumed GCL field moisture content values ranged from 162% to 22%. After three (3) years in the field, GCL coupons that had undergone at least one hydration/desiccation cycle showed no significant change in swell index values or fluid loss values. The measured hydraulic conductivity of exhumed GCL coupons from Biopiles 1 and 2 (3 × 10-11 m s-1) was within the expected range and not significantly different from the values for virgin GCL. GMB coupons exhumed after three years from Biopiles 1 and 2 showed no significant change in oxidative induction time (OIT), melt flow index or tensile properties. Diffusion tests were performed as an index test for establishing the performance of the GMBs as a diffusive barrier to hydrocarbons, with permeation parameters for BTEX contaminants ranging from P g = 0.9-9.2 × 10-13 m2 s-1 for the exhumed GMB (with values depending on the contaminant and GMB). These values were similar to the parameters obtained for virgin GMBs and there was no significant change with field exposure, with GMBs appearing to be performing well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few decades, geotextiles have progressively been incorporated into geotechnical applications, especially in the field of coastal engineering. Geotextile materials often act as separator and a filter layer between rocks laid above and subgrade beneath. This versatile material has gradually substituted traditional granular materials because of its ease of installation, consistent quality and labour costefficiency. However, geotextiles often suffer damage during installation due to high dynamic bulk loading of rock placement. This can degrade geotextiles' mechanical strength. The properties considered in this paper include the impact resistance and retained strength of geotextiles. In general, the greater the impact energy applied to geotextiles, the greater the potential for damage. Results highlight the inadequacy of using index derived values as an indicator to determine geotextile performance on site because test results shows that geotextiles (staple fibre (SF) and continuous filament (CF)) with better mechanical properties did not outperform lower mechanical strength materials. The toughest CF product with a CBR index value of 9696N shows inferior impact resistance compared to SF product with the least CBR strength (2719N) given the same impact energy of 9.02 kJ. Test results also indicated that the reduction of strength for CF materials were much greater (between 20 and 50%) compared to SF materials (between 0 and 5%) when subjected to the same impact energy of 4.52 kJ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.