980 resultados para geometric imperfection
Resumo:
This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The suspen-dome system is a new structural form that has become popular in the construction of long-span roof structures. These domes are very slender and lightweight, their configuration is complicated, and hence sequential consideration in the structural design is needed. This paper focuses on these considerations, which include the method for designing cable prestress force, a simplified analysis method, and the estimation of buckling capacity. Buckling is one of the most important problems for dome structures. This paper presents the findings of an intensive buckling study of the Lamella suspen-dome system that takes geometric imperfection, asymmetric loading, rise-to-span ratio, and connection rigidity into consideration. Finally, suggested design and construction guidelines are given in the conclusion of this paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
The stingless bee Melipona beecheii presents great variability and is considered a complex of species. In order to better understand this species complex, we need to evaluate its diversity and develop methods that allow geographic traceability of the populations. Here we present a fast, efficient, and inexpensive means to accomplish this using geometric morphometrics of wings. We collected samples from Mexico, Guatemala, El Salvador, Nicaragua, and Costa Rica and we were able to correctly assign 87.1% of the colonies to their sampling sites and 92.4% to their haplotype. We propose that geometric morphometrics of the wing could be used as a first step analysis leaving the more expensive molecular analysis only to doubtful cases.
Resumo:
High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.
Resumo:
This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.
Resumo:
Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We show that quantum pumping has a natural geometric representation in terms of gauge fields (both Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian character of the gauge field.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
This paper proposes an alternative geometric framework for analysing the inter-relationship between domestic saving, productivity and income determination in discrete time. The framework provides a means of understanding how low saving economies like the United States sustained high growth rates in the 1990s whereas high saving Japan did not. It also illustrates how the causality between saving and economic activity runs both ways and that discrete changes in national output and income depend on both current and previous accumulation behaviour. The open economy analogue reveals how international capital movements can create external account imbalances that enhance income growth for both borrower and lender economies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
Although the concept of bet-hedging has been useful in microevolutionary studies for over 25 years, a recent paper by Andrew Simons suggests that it is also applicable to macroevolutionary events, with the same fundamental process of selection working at all temporal scales.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are reported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.