935 resultados para genomic analysis
Resumo:
Chlamydia pneumoniae is an obligate intracellular bacterium implicated in a wide range of human diseases including atherosclerosis and Alzheimer's disease. Efforts to understand the relationships between C. pneumoniae detected in these diseases have been hindered by the availability of sequence data for non-respiratory strains. In this study, we sequenced the whole genomes for C. pneumoniae isolates from atherosclerosis and Alzheimer's disease, and compared these to previously published C. pneumoniae genomes. Phylogenetic analyses of these new C. pneumoniae strains indicate two sub-groups within human C. pneumoniae, and suggest that both recombination and mutation events have driven the evolution of human C. pneumoniae. Further fine-detailed analyses of these new C. pneumoniae sequences show several genetically variable loci. This suggests that similar strains of C. pneumoniae are found in the brain, lungs and cardiovascular system and that only minor genetic differences may contribute to the adaptation of particular strains in human disease.
Resumo:
The karyotype of Indian muntjacs (Muntiacus muntjak vaginalis) has been greatly shaped by chromosomal fusion, which leads to its lowest diploid number among the extant known mammals. We present, here, comparative results based on draft sequences of 37 bac
Resumo:
BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases.
Resumo:
Reliable population DNA molecular markers are difficult to develop for molluscs, the reasons for which are largely unknown. Identical protocols for microsatellite marker development were implemented in three gastropods. Success rates were lower for Gibbula cineraria compared to Littorina littorea and L. saxatilis. Comparative genomic analysis of 47.2?kb of microsatellite containing sequences (MCS) revealed a high incidence of cryptic repetitive DNA in their flanking regions. The majority of these were novel, and could be grouped into DNA families based upon sequence similarities. Significant inter-specific variation in abundance of cryptic repetitive DNA and DNA families was observed. Repbase scans show that a large proportion of cryptic repetitive DNA was identified as transposable elements (TEs). We argue that a large number of TEs and their transpositional activity may be linked to differential rates of DNA multiplication and recombination. This is likely to be an important factor explaining inter-specific variation in genome stability and hence microsatellite marker development success rates. Gastropods also differed significantly in the type of TEs classes (autonomous vs non-autonomous) observed. We propose that dissimilar transpositional mechanisms differentiate the TE classes in terms of their propensity for transposition, fixation and/or silencing. Consequently, the phylogenetic conservation of non-autonomous TEs, such as CvA, suggests that dispersal of these elements may have behaved as microsatellite-inducing elements. Results seem to indicate that, compared to autonomous, non-autonomous TEs maybe have a more active role in genome rearrangement processes. The implications of the findings for genomic rearrangement, stability and marker development are discussed.
Resumo:
The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure - a blunt right end and a 4-nucleotide 3'-protruding left end - was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5'-TACT/RTGMC-3'. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.
Resumo:
Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Recombination in Poliovirus vaccine strains is a very frequent phenomenon. In this report 23 polio/Sabin strains isolated from healthy vaccinees or from VAPP patients after OPV administration, were investigated in order to identify recombination sites from 2C to 3D regions of the poliovirus genome. RT-PCR, followed by Restriction Fragment Length Polymorphism (RFLP) screening analysis were applied in four distant genomic regions (5' UTR, VP1, 2C and 3C-3D) in order to detect any putative recombinant. The detected recombinants were sequenced from 2C to the end of the genome (3' UTR) and the exact recombination sites were determined with computational analysis. Five of the 23 isolated strains were recombinant in one genomic region, two of them in 2C, isolates EP16:S3/S2, EP23:S3/S1, two in 3D isolates EP6:S2/S1, EP12:S2/S1 and one in 3A isolate EP9:S2/Sl. Point mutations were found in strains EP3, EP6, EP9 and EP12. Recombination specific types and sites re-occurrence along with point mutations are discussed concerning the polioviruses evolution.
Resumo:
With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.
Resumo:
This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.
Resumo:
Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (F ROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
Three distinct categories of marginal zone lymphomas (MZLs) are currently recognized, principally based on their site of occurrence. They are thought to represent unique entities, but the relationship of one subtype with another is poorly understood. We investigated 17 non-splenic MZLs (seven nodal, 10 extranodal) by gene expression profiling to distinguish between subtypes and determine their cell of origin. Our findings suggest biological inter-relatedness of these entities despite occurrence at different locations and associations with possibly different aetiologies. Furthermore, the expression profiles of non-splenic MZL were similar to memory B cells.
Resumo:
In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.
Resumo:
TCL1 and TCL1b genes on human chromosome 14q23.1 are activated in T cell leukemias by translocations and inversions at 14q32.1, juxtaposing them to regulatory elements of T cell receptor genes. In this report we present the cloning, mapping, and expression analysis of the human and murine TCL1/Tcl1 locus. In addition to TCL1 and TCL1b, the human locus contains two additional genes, TCL1-neighboring genes (TNG) 1 and 2, encoding proteins of 141 and 110 aa, respectively. Both genes show no homology to any known genes, but their expression profiles are very similar to those of TCL1 and TCL1b. TNG1 and TNG2 also are activated in T cell leukemias with rearrangements at 14q32.1. To aid in the development of a mouse model we also have characterized the murine Tcl1 locus and found five genes homologous to human TCL1b. Tcl1b1–Tcl1b5 proteins range from 117 to 123 aa and are 65–80% similar, but they show only a 30–40% similarity to human TCL1b. All five mouse Tcl1b and murine Tcl1 mRNAs are abundant in mouse oocytes and two-cell embryos but rare in various adult tissues and lymphoid cell lines. These data suggest a similar or complementary function of these proteins in early embryogenesis.