951 resultados para genetic selection
Resumo:
BACKGROUND The prevalence of genotypes of the 677C>T polymorphism for the MTHFR gene varies among humans. In previous studies, we found changes in the genotypic frequencies of this polymorphism in populations of different ages, suggesting that this could be caused by an increase in the intake of folate and multivitamins by women during the periconceptional period. The aim was to analyze changes in the allelic frequencies of this polymorphism in a Spanish population, including samples from spontaneous abortions (SA). METHODS A total of 1305 subjects born in the 20th century were genotyped for the 677C>T polymorphism using allele specific real-time PCR with Taqman probes. A section of our population (n = 276) born in 1980-1989 was compared with fetal samples (n = 344) from SA of unknown etiology from the same period. RESULTS An increase in the frequency of the T allele (0.38 vs 0.47; p < 0.001) and of the TT genotype (0.14 vs 0.24; p < 0.001) in subjects born in the last quarter of the century was observed. In the 1980-1989 period, the results show that the frequency of the wild type genotype (CC) is about tenfold lower in the SA samples than in the controls (0.03 vs 0.33; p < 0.001) and that the frequency of the TT genotype increases in the controls (0.19 to 0.27) and in the SA samples (0.20 to 0.33 (p < 0.01)); r = 0.98. CONCLUSION Selection in favor of the T allele has been detected. This selection could be due to the increased fetal viability in early stages of embryonic development, as is deduced by the increase of mutants in both living and SA populations.
Resumo:
Embryonic stem (ES) cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd) gene and a fusion protein consisting of either myosin light chain (MLC)-3f or human alpha-actinin 2A and enhanced green fluorescent protein (EGFP) under the transcriptional control of the alpha-cardiac myosin heavy chain (alpha-MHC) promoter. Insertion of the DNase I-hypersensitive site (HS)-2 element from the beta-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The alpha-MHC-alpha-actinin-EGFP, but not the alpha-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cell-derived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes
Resumo:
Edited by one of the leading experts in the field, this book fills the need for a book presenting the most important methods for high-throughput screenings and functional characterization of enzymes. It adopts an interdisciplinary approach, making it indispensable for all those involved in this expanding field, and reflects the major advances made over the past few years. For biochemists, analytical, organic and catalytic chemists, and biotechnologists.
Resumo:
Replication-competent, attenuated herpes simplex virus-1 (HSV-1) derivatives that contain engineered mutations into the viral γ34.5 virulence gene have been used as oncolytic agents. However, as attenuated mutants often grow poorly, they may not completely destroy some tumors and surviving cancer cells simply regrow. Thus, although HSV-1 γ34.5 mutants can reduce the growth of human tumor xenografts in mice and have passed phase I safety studies, their efficacy is limited because they replicate poorly in many human tumor cells. Previously, we selected for a γ34.5 deletion mutant variant that regained the ability to replicate efficiently in tumor cells. Although this virus contains an extragenic suppressor mutation that confers enhanced growth in tumor cells, it remains attenuated. Here, we demonstrate that the suppressor virus replicates to greater levels in prostate carcinoma cells and, importantly, is a more potent inhibitor of tumor growth in an animal model of human prostate cancer than the γ34.5 parent virus. Thus, genetic selection in cancer cells can be used as a tool to enhance the antitumor activity of a replication-competent virus. The increased therapeutic potency of this oncolytic virus may be useful in the treatment of a wide variety of cancers.
Resumo:
We have isolated 165 Caenorhabditis elegans mutants, representing 21 genes, that are resistant to inhibitors of cholinesterase (Ric mutants). Since mutations in 20 of the genes appear not to affect acetylcholine reception, we suggest that reduced acetylcholine release contributes to the Ric phenotype of most Ric mutants. Mutations in 15 of the genes lead to defects in a gamma-aminobutyric acid-dependent behavior; these genes are likely to encode proteins with general, rather than cholinergic-specific, roles in synaptic transmission. Ten of the genes have been cloned. Seven encode homologs of proteins that function in the synaptic vesicle cycle: two encode cholinergic-specific proteins, while five encode general presynaptic proteins. Two other Ric genes encode homologs of G-protein signaling molecules. Our assessment of synaptic function in Ric mutants, combined with the homologies of some Ric mutants to presynaptic proteins, suggests that the analysis of Ric genes will continue to yield insights into the regulation and functioning of synapses.
Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria.
Resumo:
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.
Resumo:
Barnase and barstar are trivial names of the extracellular RNase and its intracellular inhibitor produced by Bacillus amyloliquefaciens. Inhibition involves the formation of a very tight one-to-one complex of the two proteins. With the crystallographic solution of the structure of the barnase-barstar complex and the development of methods for measuring the free energy of binding, the pair can be used to study protein-protein recognition in detail. In this report, we describe the isolation of suppressor mutations in barstar that compensate for the loss in interaction energy caused by a mutation in barnase. Our suppressor search is based on in vivo selection for barstar variants that are able to protect host cells against the RNAse activity of those barnase mutants not properly inhibited by wild-type barstar. This approach utilizes a plasmid system in which barnase expression is tightly controlled to keep the mutant barnase gene silent. When expression of barnase is turned on, failure to form a complex between the mutant barnase and barstar has a lethal effect on host cells unless overcome by substitution of the wild-type barstar by a functional suppressor derivative. A set of barstar suppressors has been identified for barnase mutants with substitutions in two amino acid positions (residues 102 and 59), which are critically involved in both RNase activity and barstar binding. The mutations selected as suppressors could not have been predicted on the basis of the known protein structures. The single barstar mutation with the highest information content for inhibition of barnase (H102K) has the substitution Y30W. The reduction in binding caused by the R59E mutation in barnase can be partly reversed by changing Glu-76 of barstar, which forms a salt bridge with the Arg-59 in the wild-type complex, to arginine, thus completing an interchange of the two charges.
Resumo:
An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.
Resumo:
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects.
Resumo:
Genetic correlations of selection indices and the traits considered in these indices with mature weight (MW) of Nelore females and correlated responses were estimated to determine whether current selection practices will result in an undesired correlated response in MW. Genetic trends for weaning and yearling indices and MW were also estimated. Data from 612,244 Nelore animals born between 1984 and 2010, belonging to different beef cattle evaluation programs from Brazil and Paraguay, were used. The following traits were studied: weaning conformation (WC), weaning precocity (WP), weaning muscling (WM), yearling conformation (YC), yearling precocity (YP), yearling muscling (YM), weaning and yearling indices, BW gain from birth to weaning (BWG), postweaning BW gain (PWG), scrotal circumference (SC), and MW. The variance and covariance components were estimated by Bayesian inference in a multitrait analysis, including all traits in the same analysis, using a nonlinear (threshold) animal model for visual scores and a linear animal model for the other traits. The mean direct heritabilities were 0.21 ± 0.007 (WC), 0.22 ± 0.007 (WP), 0.20 ± 0.007 (WM), 0.43 ± 0.005 (YC), 0.40 ± 0.005 (YP), 0.40 ± 0.005 (YM), 0.17 ± 0.003 (BWG), 0.21 ± 0.004 (PWG), 0.32 ± 0.001 (SC), and 0.44 ± 0.018 (MW). The genetic correlations between MW and weaning and yearling indices were positive and of medium magnitude (0.30 ± 0.01 and 0.31 ± 0.01, respectively). The genetic changes in weaning index, yearling index, and MW, expressed as units of genetic SD per year, were 0.26, 0.27, and 0.01, respectively. The genetic trend for MW was nonsignificant, suggesting no negative correlated response. The selection practice based on the use of sires with high final index giving preference for those better ranked for yearling precocity and muscling than for conformation generates only a minimal correlated response in MW. © 2013 American Society of Animal Science. All rights reserved.
Resumo:
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.
Resumo:
The objective of this work was to investigate possible maternal effects on potassium content of common bean seeds, as well as to estimate the heritability and selection gains in early hybrid generations for this character and to evaluate the efficiency of genetic selection to improve the nutritional quality of common bean (Phaseolus vulgaris). Crosses with four cultivars from the Mesoamerican gene pool yielded the reciprocal F1 and F2 generations and the backcrossed populations (BCP1 and BCP2). The potassium content of the progenies was measured via nitric‑perchloric digestion and flame photometry. The potassium content in the tested progenies varied from 6.0 to 14.9 g kg-1 dry matter, and no significant maternal effect was observed. The narrow-sense heritability ranged from low (33.26%) to intermediate (43.05%). Partial dominance was observed for low potassium content in the seeds. No increase in potassium content was obtained through selection. Breeding common bean plants for increasing potassium content in seeds may be difficult because the local environment strongly influences the character.