984 resultados para genetic progress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stay-green plants retain green leaves longer after anthesis and can have improved yield, particularly under water limitation. As senescence is a dynamic process, genotypes with different senescence patterns may exhibit similar final normalised difference vegetative index (NDVI). By monitoring NDVI from as early as awn emergence to maturity, we demonstrate that analysing senescence dynamics improves insight into genotypic stay-green variation. A senescence evaluation tool was developed to fit a logistic function to NDVI data and used to analyse data from three environments for a wheat (Triticum aestivum L.) population whose lines contrast for stay-green. Key stay-green traits were estimated including, maximum NDVI, senescence rate and a trait integrating NDVI variation after anthesis, as well as the timing from anthesis to onset, midpoint and conclusion of senescence. The integrative trait and the timing to onset and mid-senescence exhibited high positive correlations with yield and a high heritability in the three studied environments. Senescence rate was correlated with yield in some environments, whereas maximum NDVI was associated with yield in a drought-stressed environment. Where resources preclude frequent measurements, we found that NDVI measurements may be restricted to the period of rapid senescence, but caution is required when dealing with lines of different phenology. In contrast, regular monitoring during the whole period after flowering allows the estimation of senescence dynamics traits that may be reliably compared across genotypes and environments. We anticipate that selection for stay-green traits will enhance genetic progress towards high-yielding, stay-green germplasm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Foram estimados os coeficientes de herdabilidade e a mudança genética para peso à desmama (PD), peso ao sobreano (PS), ganho de peso do nascimento à desmama (GND), ganho de peso da desmama ao sobreano (GDS), perímetro escrotal (PE) e idade ao primeiro parto (IPP) em animais da raça Nelore. Foram utilizados dados de 128.148 animais nascidos entre 1984 e 2006. Os componentes de variância foram estimados pelo método da máxima verossimilhança restrita, e os valores genéticos foram preditos por modelos mistos aplicando-se modelo animal bicaracterística, incluindo peso à desmama em todas as análises. As tendências genéticas foram estimadas pela regressão dos valores genéticos sobre o ano de nascimento dos animais. Os coeficientes de herdabilidade do efeito direto estimados foram de 0,23 (0,07) (PD); 0,24 (0,02) (PS); 0,21 (0,01) (GND); 0,23 (0,01) (GDS); 0,46 (0,02) (PE) e 0,15 (0,01) (IPP). As tendências genéticas diretas estimadas foram de 0,171 (0,01); 0,219 (0,02); 0,186 (0,03) e 0,224 (0,02) kg/ano para PD, PS, GND e GDS, respectivamente, o que representa incrementos de 0,10; 0,08; 0,13 e 0,22% nas médias das mesmas características ao ano, respectivamente. Para o PE e a IPP no período de 1984 a 1995, as tendências genéticas foram nulas, com valores de 0,011 (0,03) cm/ano e -0,003 (0,06) dias/ano, respectivamente. No segundo período considerado (1996 a 2006), as tendências genéticas para PE e IPP foram de 0,069 (0,01) cm/ano e -3,024 (0,04) dias/ano, respectivamente, indicando melhorias consideráveis em tais características. Esses valores sugerem que características produtivas e reprodutivas, quando utilizadas como critério de seleção, proporcionam progresso genético no rebanho, sendo indicadas para seleção de animais da raça Nelore.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

P>In this study, Bayesian analysis under a threshold animal model was used to estimate genetic correlations between morphological traits (body structure, finishing precocity and muscling) in Nelore cattle evaluated at weaning and yearling. Visual scores obtained from 7651 Nelore cattle at weaning and from 4155 animals at yearling, belonging to the Brazilian Nelore Program, were used. Genetic parameters for the morphological traits were estimated by two-trait Bayesian analysis under a threshold animal model. The genetic correlations between the morphological traits evaluated at two ages of the animal (weaning and yearling) were positive and high for body structure (0.91), finishing precocity (0.96) and muscling (0.94). These results indicate that the traits are mainly determined by the same set of genes of additive action and that direct selection at weaning will also result in genetic progress for the same traits at yearling. Thus, selection of the best genotypes during only one phase of life of the animal is suggested. However, genetic differences between morphological traits were better detected during the growth phase to yearling. Direct selection for body structure, finishing precocity and muscling at only one age, preferentially at yearling, is recommended as genetic differences between traits can be detected at this age.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to estimate genetic parameters for milk yield at 244 days and lactation length in graded buffalo cows at the El Cangre Cattle Genetic Enterprise. Data were gathered from 2575 lactations, 1377 buffalo cows, 37 milking units and between 2002-2009 calving years. It was employed the Restricted Maximum Likelihood method (REML) for estimating (co) variance components with multi trait model. Average of milk yield at 244 days and lactation length were 864 kg and 240 days, respectively. Heritability was 0.15 for milk yield and 0.13 for lactation length. Genetic correlation between these traits was 0.63. It was concluded that it is necessary to intensify selection and to increase control of the information of the genetic herds to obtain high precision in the estimates and therefore, obtain bigger genetic progress in of this species in our country.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 +/- 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 +/- 0.01, 0.48 +/- 0.02, and 0.19 +/- 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 +/- 0.07 (WW), -0.13 +/- 0.08 (ADG), and -0.11 +/- 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that long-term selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to describe the population structure, inbreeding and to quantify their effect for different weights, of Santa Ines sheep. For this reason, 6490 data of production and 17,097 animals in the pedigree data set were utilized to evaluate birth weight (BW), weight at 60 days (W60) and weight at 180 days (W180). The genetic structure analysis of the population was realized by the software ENDOG (v.4.6.), resulting in some level of inbreeding for 21.72% of the animals in the pedigree data, being 41.02% the maximum value, and average of 10.74% for the inbred individuals. The population average inbreeding was 2.33% and the average relatedness was 0.73%. The effective number of ancestors was 156 animals and the effective number of founders was 211 individuals. A significant depressive effect of the inbreeding can be verified for all traits. The monitored parameters related with the genetic variability on this population must be constant in order to prevent the decrease in the genetic progress. The utilization of a program for directed mating in the present flock is an appropriate alternative to keep the level of inbreeding under control. (C) 2010 Elsevier B.V. All rights reserved.