879 resultados para genetic and environmental factors
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
On the basis of information provided by the Brazilian Association of Race Horse Breeders, we analysed the racing performance of 947 Thoroughbred horses in races held from 1985 to 1992. The performance was evaluated using the best, time of the animals. The variance component was obtained by the derivative-free restricted maximum likelihood method, and the model used contained fixed effects of the racing month and year, sex, race track, track condition, animal age, number of competitors in race, and distance, and the random animal effect. The low heritability estimate obtained (0.12) indicates that selection based on animal phenotypic value must induce small genetic changes in this trail.
Resumo:
A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L.yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines.
Resumo:
AD is the most common age related neurodegenerative disease in the industrialized world. Clinically AD is defined as a progressing decline of cognitive functions. Neuropathologically, AD is characterized by the aggregation of b-amyloid (Ab) peptide in the form of extracellular senile plaques, and hyperphosphorlylated tau protein in the form of intracellular neurofibrillary tangles. These neuropathological hallmarks are often accompanied by abundant microvascular damage and pronounced inflammation of the affected brain regions. In this thesis we investigated several aspects of AD focusing on the genetic aspect. We confirmed that Alpha 1 antichymotrypsin (ACT), an acute phase protein, was associated to AD subjects, being plasma levels higher in AD cases than controls. In addition, in a GWA study we demonstrated that two different gene, Clusterin and CR1 were strongly associated to AD. A single gene association not explain such a complex disease like AD. The goal should be to created a network of genetic, phenotypic and clinical data associated to AD. We used a new algorithm, the ANNs, aimed to map variables and search for connectivity among variables. We found specific variables associated to AD like cholesterol levels, the presence of variation in HMGCR enzyme and the age. Other factors such as the BMI, the amount of HDL and blood folate levels were also associated with AD. Pathogen infections, above all viral infections, have been previously associated to AD. The hypothesis suggests that virus and in particular herpes virus could enter the brain when an individual becomes older, perhaps because of a decline in the immune system. Our new hypothesis is that the presence of SNPs in our GWA gene study results in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging.
Resumo:
Acute myocardial infarction (AMI) is a multifactorial disease with a complex pathogenesis where lifestyle, individual genetic background and environmental risk factors are involved. Altered inflammatory responses seems to be implicated in the pathogenesis of atherosclerosis. To understand which genes may predispose to increased risk of cardiovascular disease gene polymorphism of immune regulatory genes, and clinical events from the Offs of parents with an early AMI were investigated. Genetics data from Offs were compared with those obtained from healthy subjects and an independent cohort of patients with clinical sporadic AMI. Rates of clinical events during a 24 years follow up from Offs and from an independent Italian population survey were also evaluated. This study showed that a genetic signature consisting of the concomitant presence of the CC genotype of VEGF, the A allele of IL-10 and the A allele of IFN-γ was indeed present in the Offs population. During the 24-year follow-up, Offs with a positive familiarity in spite of a relatively young age showed an increased prevalence of diabetes, ischemic heart disease and stroke. In these patients with the genetic signature the EBV and HHV-6 herpes virus were also investigated and founded. These findings reinforce the notion that subjects with a familial history of AMI are at risk of an accelerated aging of cardiovascular system resulting in cardiovascular events. These data suggest that selected genes with immune regulatory functions and envoronmental factors are part of the complex genetic background contributing to familiarity for cardiovascular diseases.N
Resumo:
BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.
Resumo:
BACKGROUND: Environment and genetics influence the manifestation of recurrent airway obstruction (RAO), but the associations of specific factors with mild, moderate, and severe clinical signs are unknown. HYPOTHESIS: We hypothesized that sire, feed, bedding, time outdoors, sex, and age are associated with clinical manifestations of mild, moderate, and severe lower airway disease. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (F1S1, n = 172; F1S2, n = 135); maternal half-siblings of F1S1 (mHSS1, n = 66); and an age-matched, randomly chosen control group (CG, n = 33). METHODS: A standardized questionnaire was used to assess potential risk factors and to establish a horse owner assessed respiratory signs index (HOARSI 1-4, from healthy to severe) according to clinical signs of lower airway disease. RESULTS: More F1S1 and F1S2 horses showed moderate to severe clinical signs (HOARSI 3 and HOARSI 4 combined, 29.6 and 27.3%, respectively) compared with CG and mHSS1 horses (9.1 and 6.2%, respectively; contingency table overall test, P < .001). Sire, hay feeding, and age (in decreasing order of strength) were associated with more severe clinical signs (higher HOARSI), more frequent coughing, and nasal discharge. CONCLUSIONS AND CLINICAL RELEVANCE: There is a genetic predisposition and lesser but also marked effects of hay feeding and age on the manifestation of moderate to severe clinical signs, most markedly on coughing frequency. In contrast, mild clinical signs were not associated with sire or hay feeding in our populations.
Resumo:
The incubation period (IP) and the neuropathology of transmissible spongiform encephalopathies (TSEs) have been extensively used to distinguish prion isolates (or strains) inoculated into panels of inbred mouse strains. Such studies have shown that the bovine spongiform encephalopathy (BSE) agent is indistinguishable from the agent causing variant Creutzfeldt–Jakob disease (vCJD), but differs from isolates of sporadic CJD, reinforcing the idea that the vCJD epidemic in Britain results from consumption of contaminated beef products. We present a mouse model for genetic and environmental factors that modify the incubation period of BSE cross-species transmission. We have used two mouse strains that carry the same prion protein (PrP) allele, but display a 100-day difference in their mean IP following intracerebral inoculation with primary BSE isolate. We report genetic effects on IP that map to four chromosomal regions, and in addition we find significant factors of host environment, namely the age of the host's mother, the age of the host at infection, and an X-cytoplasm interaction in the host.
Genetic and environmental heterogeneity of residual variance of weight traits in Nellore beef cattle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated genetic and environmental factors affecting age at first farrowing of sows in the Brazilian southeast. For this purpose, 466 observations regarding the age at first farrowing were made for Dalland-C40 (c) animals belonging to two herds. The effects of the environmental factors on this trait were assessed by means of a model that included, as random effects, the influence of the sow's father and mother and, as fixed effects, the influence the year of birth, the herd and the birth season, along with the covariable litter size at birth. The variance components were estimated using the derivative-free restricted maximum likelihood method. The estimated mean was 354.8 +/- 25.87 days, with a coefficient of variation of 7.29%. Significant effects on the trait were observed for the herd, the year and the season of birth; but a linear effect of litter size at birth on the age at first farrowing was not observed. The boar did not significantly contribute to the variation occurring among the sows, whereas the sow's mother caused significant variation. The heritability estimate for the age at first farrowing was 0.44 +/- 0.15, which is considered high. We concluded that herd effect and year and season of birth should be taken into consideration for an accurate genetic comparison; consequently, the animals should be joined into contemporary groups.
Resumo:
Our studies of the teeth and faces of Australian twins commenced at the School of Dentistry, The University of Adelaide in the early 1980s. There are now over 900 pairs of twins enrolled in our continuing investigations, together with 1200 relatives. There are 3 main cohorts of participants. The first cohort comprises around 300 pairs of teenage twins for whom various records have been collected, including dental casts, facial photographs, finger and palm prints and information on laterality, including handedness. The second cohort comprises around 300 pairs of twins who have been examined at 3 stages of dental development from approximately 4 years of age to about 14 years: at primary, mixed, and permanent dentition (excluding 3rd molars) stages. The most recent study of tooth emergence and oral health, for which we are currently recruiting twins, will provide a third cohort of around 500 twin pairs aged from around birth to 3 to 4 years of age. Our broad aim in these studies has been to improve our understanding of how genetic and environmental factors contribute to variation in dental and facial features, and to oral health. We have also used our data to investigate aspects of the determination of laterality, particularly the fascinating phenomenon of mirror imaging. We plan to maximize the use of the longitudinal data and DNA we have collected, and continue to collect, by performing genome-wide scans for putative genetic linkage peaks for a range of dental features, and then to test for association between a series of likely candidate genes and our phenotypes.
Resumo:
Genetic diversity of the plankton community in Lake Xiliang was depicted by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Seventy-seven bands (33 of 16S rDNA and 44 of 18S rDNA) were detected, sixty-two planktonic taxa were identified in six sample stations in November 2007. The most common taxa were Ceratium hirundinella, Bdelloidea, Keratella cochlearis, Polyarthra trigla, and copepod nauplii. Based on environmental factors, taxonomic composition, and PCR-DGGE fingerprinting, unweighted pair-group method using arithmetic averages clustering and principal components analysis were used to analyze habitat similarities. There was distinct spatial heterogeneity in Lake Xiliang, and the genetic diversity of the plankton community was closely related to taxonomic composition and environmental factors.
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
Congenital heart disease (CHD) occurs in similar to 1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.