871 resultados para generalised linear mixed model
Resumo:
We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.
Resumo:
Pspline uses xtmixed to fit a penalized spline regression and plots the smoothed function. Additional covariates can be specified to adjust the smooth and plot partial residuals.
Resumo:
In this article, we consider local influence analysis for the skew-normal linear mixed model (SN-LMM). As the observed data log-likelihood associated with the SN-LMM is intractable, Cook`s well-known approach cannot be applied to obtain measures of local influence. Instead, we develop local influence measures following the approach of Zhu and Lee (2001). This approach is based on the use of an EM-type algorithm and is measurement invariant under reparametrizations. Four specific perturbation schemes are discussed. Results obtained for a simulated data set and a real data set are reported, illustrating the usefulness of the proposed methodology.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
The Lesser Grain Borer is a major pest of stored grain with a global distribution. This project has, for the first time recorded this pest throughout broad spatial areas, tens of kilometres from grain production or storage. Statistical analysis revealed that different factors such as ambient temperature and the availability of food resources affect R. dominica differently between different habitats. This suggests that, contrary to the prevailing view, this pest is not solely dependent on stored wheat and can continue to persist throughout a range of habitats. These findings have important management implications for Australia's wheat industry.
Resumo:
Sub-pixel classification is essential for the successful description of many land cover (LC) features with spatial resolution less than the size of the image pixels. A commonly used approach for sub-pixel classification is linear mixture models (LMM). Even though, LMM have shown acceptable results, pragmatically, linear mixtures do not exist. A non-linear mixture model, therefore, may better describe the resultant mixture spectra for endmember (pure pixel) distribution. In this paper, we propose a new methodology for inferring LC fractions by a process called automatic linear-nonlinear mixture model (AL-NLMM). AL-NLMM is a three step process where the endmembers are first derived from an automated algorithm. These endmembers are used by the LMM in the second step that provides abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual proportions are fed to multi-layer perceptron (MLP) architecture as input to train the neurons which further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. AL-NLMM is validated on computer simulated hyperspectral data of 200 bands. Validation of the output showed overall RMSE of 0.0089±0.0022 with LMM and 0.0030±0.0001 with the MLP based AL-NLMM, when compared to actual class proportions indicating that individual class abundances obtained from AL-NLMM are very close to the real observations.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
The problem of Small Area Estimation is about how to produce reliable estimates of domain characteristics when the sample sizes within the domain is very small ou even zero.
Resumo:
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171-1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605-610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897-916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.