984 resultados para gene signature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible, intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition (EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model selection between competing models is a key consideration in the discovery of prognostic multigene signatures. The use of appropriate statistical performance measures as well as verification of biological significance of the signatures is imperative to maximise the chance of external validation of the generated signatures. Current approaches in time-to-event studies often use only a single measure of performance in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the study to facilitate signature discovery. In this study we improve the prognostic signature discovery process through the application of the multivariate partial Cox model combined with the concordance index, hazard ratio of predictions, independence from available clinical covariates and biological enrichment as measures of signature performance. The proposed framework was applied to discover prognostic multigene signatures from early breast cancer data. The partial Cox model combined with the multiple performance measures were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within cross validation without dichotomising the follow-up times at any stage. The signatures were successfully externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for the top ranking signature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease.

RESULTS: We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user’s perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oral Squamous Cell Carcinoma (OSCC) is a major cause of cancer death worldwide, which is mainly due to recurrence leading to treatment failure and patient death. Histological status of surgical margins is a currently available assessment for recurrence risk in OSCC; however histological status does not predict recurrence, even in patients with histologically negative margins. Therefore, molecular analysis of histologically normal resection margins and the corresponding OSCC may aid in identifying a gene signature predictive of recurrence.Methods: We used a meta-analysis of 199 samples (OSCCs and normal oral tissues) from five public microarray datasets, in addition to our microarray analysis of 96 OSCCs and histologically normal margins from 24 patients, to train a gene signature for recurrence. Validation was performed by quantitative real-time PCR using 136 samples from an independent cohort of 30 patients.Results: We identified 138 significantly over-expressed genes (> 2-fold, false discovery rate of 0.01) in OSCC. By penalized likelihood Cox regression, we identified a 4-gene signature with prognostic value for recurrence in our training set. This signature comprised the invasion-related genes MMP1, COL4A1, P4HA2, and THBS2. Overexpression of this 4-gene signature in histologically normal margins was associated with recurrence in our training cohort (p = 0.0003, logrank test) and in our independent validation cohort (p = 0.04, HR = 6.8, logrank test).Conclusion: Gene expression alterations occur in histologically normal margins in OSCC. Over-expression of the 4-gene signature in histologically normal surgical margins was validated and highly predictive of recurrence in an independent patient cohort. Our findings may be applied to develop a molecular test, which would be clinically useful to help predict which patients are at a higher risk of local recurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer stem cell (CSC) based gene expression signatures are associated with prognosis in various tumour types and CSCs are suggested to be particularly drug resistant. The aim of our study was first, to determine the prognostic significance of CSC-related gene expression in residual tumour cells of neoadjuvant-treated gastric cancer (GC) patients. Second, we wished to examine, whether expression alterations between pre- and post-therapeutic tumour samples exist, consistent with an enrichment of drug resistant tumour cells. The expression of 44 genes was analysed in 63 formalin-fixed, paraffin embedded tumour specimens with partial tumour regression (10-50% residual tumour) after neoadjuvant chemotherapy by quantitative real time PCR low-density arrays. A signature of combined GSK3B(high), β-catenin (CTNNB1)(high) and NOTCH2(low) expression was strongly correlated with better patient survival (p<0.001). A prognostic relevance of these genes was also found analysing publically available gene expression data. The expression of 9 genes was compared between pre-therapeutic biopsies and post-therapeutic resected specimens. A significant post-therapeutic increase in NOTCH2, LGR5 and POU5F1 expression was found in tumours with different tumour regression grades. No significant alterations were observed for GSK3B and CTNNB1. Immunohistochemical analysis demonstrated a chemotherapy-associated increase in the intensity of NOTCH2 staining, but not in the percentage of NOTCH2. Taken together, the GSK3B, CTNNB1 and NOTCH2 expression signature is a novel, promising prognostic parameter for GC. The results of the differential expression analysis indicate a prominent role for NOTCH2 and chemotherapy resistance in GC, which seems to be related to an effect of the drugs on NOTCH2 expression rather than to an enrichment of NOTCH2 expressing tumour cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature. Methods: Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort. Results: A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p < 0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group. Conclusion: We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Tumorigenesis is characterised by changes in transcriptional control. Extensive transcript expression data have been acquired over the last decade and used to classify prostate cancers. Prostate cancer is, however, a heterogeneous multifocal cancer and this poses challenges in identifying robust transcript biomarkers.

METHODS: In this study, we have undertaken a meta-analysis of publicly available transcriptomic data spanning datasets and technologies from the last decade and encompassing laser capture microdissected and macrodissected sample sets.

RESULTS: We identified a 33 gene signature that can discriminate between benign tissue controls and localised prostate cancers irrespective of detection platform or dissection status. These genes were significantly overexpressed in localised prostate cancer versus benign tissue in at least three datasets within the Oncomine Compendium of Expression Array Data. In addition, they were also overexpressed in a recent exon-array dataset as well a prostate cancer RNA-seq dataset generated as part of the The Cancer Genomics Atlas (TCGA) initiative. Biologically, glycosylation was the single enriched process associated with this 33 gene signature, encompassing four glycosylating enzymes. We went on to evaluate the performance of this signature against three individual markers of prostate cancer, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) expression, prostate specific antigen (PSA) expression and androgen receptor (AR) expression in an additional independent dataset. Our signature had greater discriminatory power than these markers both for localised cancer and metastatic disease relative to benign tissue, or in the case of metastasis, also localised prostate cancer.

CONCLUSION: In conclusion, robust transcript biomarkers are present within datasets assembled over many years and cohorts and our study provides both examples and a strategy for refining and comparing datasets to obtain additional markers as more data are generated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.