989 resultados para gene introduction
Resumo:
梗稻广亲和种质02428h中倒一节间伸长的性状由一对隐性基因(h基因)所控制,本实验证明了将h基因导入保持系与雄性不育系中均能得到遗传表达,促进倒一节的伸长。h基因与可育胞质及野败不育胞质作用后分别使穗伸出度达15cm,1.2cm,而相应珍汕97B及珍汕97A穗伸出度仅分别为1.7cm,-9.8cm。即h基因使穗伸出度分别提高8.8倍及1.2倍。因此,利用h基因有可能充分消除雄性不育系的包颈现象。The character of greatly elongated uppermost internode of wide compatible japonica rice 02428h iscontrolled by a recessive gene(b gene). The study shows that h gene could get genetic expression in maintaince andmale-sterile line(MS-line) and make the uppermost internode elonged. H gene interacts with the fertile and wild abortive male sterile cytoplasm make panicie neck exsert to 15cm and 1.2cm, while panicle neck exsertions of parents zhenshan 97B and A were 1.7cm and -9.8cm. So, h gene makes panicle necks exsert 8.8 and 1.2 times repectively. Its is possible to introduce h gene into male-sterile line so as to eliminate panicle endosure.
Resumo:
One of the recurring themes in any discussion concerning the application of genetic transformation technology is the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise, usually related to methodology and referred to as “Trade Secrets”. This review will explain the concepts behind patent protection, and will discuss the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of these patents have any significant commercial value, there are a small number of key patents that may restrict the “freedom to operate” of any company seeking to exploit the methods. Over the last twenty years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered to be of little interest to the academic scientist working in the public sector, they are of great importance in any debate about the role of “public-good breeding” and of the relationship between the public and private sectors.
Resumo:
One of the recurring themes of the debates concerning the application of genetic transformation technology has been the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise usually related to methodology and referred to as 'Trade Secrets'. This review explains the concepts behind patent protection, and discusses the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of the patents in this area have any real commercial value, there are a small number of key patents that restrict the 'freedom to operate' of new companies seeking to exploit the methods. Over the last 20 years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered of little interest to the academic scientist working in the public sector, they are of great importance in any discussion of the role of 'public-good breeding' and of the relationship between the public and private sectors.
Resumo:
One of the important themes in any discussion concerning the application of genetic transformation technology in horticulture or elsewhere is the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise, usually related to methodology and referred to as “Trade Secrets”. This review will explain the concepts behind patent protection, and will discuss the wide-ranging scope of existing patents that cover novel genotypes of plants as well as all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of these patents have any significant commercial value there are a small number of key patents that may restrict the “freedom to operate” of any company seeking to exploit the methods in the production of transgenic varieties. Over the last twenty years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues may have limited relevance in the horticultural sector, and are often considered to be of little interest to the academic scientist working in the public sector, they are of great importance in any debate about the role of “public-good breeding” and of the relationship between the public and private sectors.
Resumo:
Haemorrhage can be an epidemic and fatal condition in grass carp. It is known now that the Grass Carp Haemorrhage Virus (GCHV) triggers haemorrhage. Human lactoferrin (hLF) plays an important role in the non-specific immune system, making some organisms more resistant to some viruses. Sperm of grass carp was mixed with linearized pCAhLFc, which is a DNA construct containing an hLF cDNA and the promoter of common carp beta-actin gene, and then electroporated. Then, mature eggs were fertilized in vitro with the treated sperm cells. The fry were sampled and analyzed by polymerase chain reaction (PCR). Results indicated that the foreign gene had been transferred successfully into the cells of some fry. Under optimal electroporation conditions, the efficiency of gene transfer was as high as 46.8%. About 35.7% of treated 5-month-old grass carp contained foreign genes. Most transgenic fry demonstrated significant delays in onset of symptoms of haemerrhage after injection of GCHV, suggesting a significant positive relationship between hLF cDNA and levels of disease resistance (P < 0.01). Results suggest that transgenic grass carp could be bred for increased resistance to haemorrhage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration
Resumo:
Introduction and aims: For a scaffold material to be considered effective and efficient for tissue engineering it must be biocompatible as well as bioinductive. Silk fiber is a natural biocompatible material suitable for scaffold fabrication; however, silk is tissue-conductive and lacks tissue-inductive properties. One proposed method to make the scaffold tissue-inductive is to introduce plasmids or viruses encoding a specific growth factor into the scaffold. In this study, we constructed adenoviruses encoding bone morphogenetic protein-7 (BMP-7) and incorporated these into silk scaffolds. The osteo-inductive and new bone formation properties of these constructs were assessed in vivo in a critical-sized skull defect animal model. Materials and methods: Silk fibroin scaffolds containing adenovirus particles coding BMP-7 were prepared. The release of the adenovirus particles from the scaffolds was quantified by tissue-culture infective dose (TCID50) and the bioactivity of the released viruses was evaluated on human bone marrow mesenchymal stromal cells (BMSCs). To demonstrate the in vivo bone forming ability of the virus-carrying silk fibroin scaffold, the scaffold constructs were implanted into calvarial defects in SCID mice. Results: In vitro studies demonstrated that the virus-carrying silk fibroin scaffold released virus particles over a 3 week period while preserving their bioactivity. In vivo test of the scaffold constructs in critical-sized skull defect areas revealed that silk scaffolds were capable of delivering the adenovirus encoding BMP-7, resulting significantly enhanced new bone formation. Conclusions: Silk scaffolds carrying BMP-7 encoding adenoviruses can effectively transfect cells and enhance both in vitro and in vivo osteogenesis. The findings of this study indicate silk fibroin is a promising biomaterial for gene delivery to repair critical-sized bone defects.
Resumo:
Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.
Resumo:
In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses.
Resumo:
Introduction Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) shares common symptoms with migraine. Most CADASIL causative mutations occur in exons 3 and 4 of the Notch 3 gene. This study investigated the role of C381T (rs 3815188) and G684A (rs 1043994) single nucleotide polymorphisms (SNP) in exons 3 and 4, respectively, of the Notch 3 gene in migraine. Results The first part of the study, in a population of 275 migraineurs and 275 control individuals, found a significant association between the C381T variant and migraine, specifically in migraine without aura (MO) sufferers. The G684A variant was also found to be significantly associated with migraine, specifically in migraine with aura (MA) sufferers. A follow-up study in 300 migraineurs and 300 control individuals did not show replicated association of the C381T variant with migraineurs. However, the G684A variant was again shown to be significantly associated with migraine, specifically with MA. Conclusion Further investigation of the G684A variant and the Notch 3 gene is warranted to understand their role in migraine.
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.
Resumo:
A transformation technique for the introduction of transgenes to control blackheart by particle bombardment has been developed for pineapple cv. Smooth Cayenne. Leaf callus cultures capable of high frequency organogenesis with a short regeneration time were used as explant material. Gus and gfp reporter genes were used to observe and determine transient and stable expression. The ppo gene, isolated from pineapple, was introduced to control blackheart. Co-transformation occurred with constructs containing the nptII gene conferring geneticin resistance. We have recovered 15 independent transgenic gus and gfp lines each from 8 separate experiments and 22 ppo lines from 11 experiments. Gus, gfp, ppo and nptII positive plants have been regenerated, which have been shown by Southern blot analysis to be stable transgenics containing multiple copies of the introduced genes. These results show that biolistic gene delivery in pineapple can be successfully achieved at an acceptable efficiency of 0.21-1.5% for genetic improvement of 'Smooth Cayenne', the industry standard throughout the world.