997 resultados para gene clone
Resumo:
Previous studies were focussed on the attempt to correlate observable variations in the size of Plasmodium berghei chromosomes with the loss of ability to produce viable gametocytes. A temporal coincidence between the appearance of a subtelomeric deletion on P. berghei chromosome 5 and the loss of the ability to produce viable gametocytes was observed in a clone (HPE) directly derived from the high gametocyte-producer clone 8417 during mechanical passages. Interestingly enough, three P. berghei sexual-specific genes have already been mapped on internal fragments of this chromosome. A novel gene, clone 150, isolated from a genomic library of clone 8417 using a probe enriched for sexual-specific transcripts, maps on chromosome 5 within 100kb from the telomere. Subtelomeric deletions of chromosome 5 affecting two non-producer clones involve part of the transcribed region of this gene.
Resumo:
In addition to a previously described histone (H)-encoding H4 gene [Meier et al., Nucleic Acids Res. 17 (1989) 795], the mouse genomic DNA clone 53 contains two H3 genes, one functional and one partially deleted H2A gene, and one H2B gene. Clone 53 overlaps for 3 kb with MH143, another previously isolated mouse H-encoding clone [Yang et al., J. Biol. Chem. 262 (1987) 17118-17125], thus defining a 32-kb region of mouse chromosome 13 with a total of seven H-encoding genes. We have determined the nucleotide sequences and transcription start points of two genes coding for the H2A.1 and H3.2 proteins.
Resumo:
The Rodrigo de Freitas lagoon (RFL) is a tropical eutrophic coastal ecosystem located in the urban area of Rio de Janeiro, Brazil. This environment consists of freshwater but has communication with the ocean through a channel (Jardim de Alah`s Channel). The aim of this study was to evaluate the influence of lagoon water on the nearby ocean using molecular and traditional microbiological methods. We hypothesised that due to the eutrophic low-salinity environment, the bacterioplankton community from the RFL would have a native ""brackish"" composition influenced by both freshwater and marine phylotypes, and that bacterial phylotypes of this community would be detected in oceanic samples closer to the channel between the lagoon and the ocean. The cultivation and microscopy experiments clearly showed this influence. Bacterial cell counts revealed that the greater amounts of bacterial cells present in the lagoon increased the observed values seen at oceanic stations near the channel. The Denaturing gradient gel eletrophoresis community profiles also showed a clear influence of Rodrigo de Freitas lagoon waters on the adjacent beaches. The band patterns found for the stations near the channel showed that these communities were mixtures of the communities of the lagoon and sea, and as the distance from the channel increased, the samples became more similar to ocean bacterial communities. A 16S rRNA gene clone library was constructed using a sample acquired from the connection point between the lagoon and the ocean. Around 52% of the sequences in the library showed similarity to the genus Proteobacteria (1% Alpha, 21% Beta, 19% Gamma and 29% unclassified Proteobacteria), and the second most abundant genus was Bacteroidetes, with 15% of the total clones. The results showed that the structure of the bacterial community had both freshwater and marine characteristics.
Resumo:
Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use.
Resumo:
The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.
Resumo:
The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism-plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR-DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.
Resumo:
Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus Scalindua brodae and Scalindua wagneri considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus Scalindua sorokinii, was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (>99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.
Resumo:
We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (~24% salinity), subzero (-5 C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ~84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (~50%) with the low CH4/C2 + ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.
Resumo:
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.
Resumo:
This study used a culture-independent molecular approach to investigate the archaeal community composition of thermophilic bioleaching reactors. Two culture samples, MTC-A and MTC-B, grown with different concentrations of chalcopyrite (CuFeS2), a copper sulfidic ore, at a temperature of 78 degrees C and pH 1.6 were studied. Phylogenetic analysis of the 16S rRNA genes revealed that both cultures consisted of Archaea belonging to the Sulfolobales. The 16S rRNA gene clone library of MTC-A grown with 4% (w/v) chalcopyrite was dominated by a unique phylotype related to Sulfolobus shibatae (69% of total clones). The remaining clones were affiliated with Stygiolobus azoricus (11%), Metallosphaera sp. J1 (8%), Acidianus infernus (2%), and a novel phylotype related to Sulfurisphaera ohwakuensis (10%). In contrast, the clones from MTC-B grown with 12% (w/v) chalcopyrite did not appear to contain Sulfolobus shibatae-like organisms. Instead the bioleaching consortium was dominated by clones related to Sulfurisphaera ohwakuensis (73.9% of total clones). The remaining microorganisms detected were similar to those found in MTC-A.
Resumo:
By using improved pulsed field gel electrophoresis conditions, the molecular karyotype of the reference clone CL Brener selected for Trypanosoma cruzi genome project was established. A total of 20 uniform chromosomal bands ranging in size from 0.45 to 3.5 Megabase pairs (Mbp) were resolved in a single run. The weighted sum of the chromosomal bands was approximately 87 Mbp. Chromoblots were hybridized with 39 different homologous probes, 13 of which identified single chromosomes. Several markers showed linkage and four different linkage groups were identified, each comprising two markers. Densitometric analysis suggests that most of the chromosomal bands contain two or more chromosomes representing either homologous chromosomes and/or heterologous chromosomes with similar sizes
Resumo:
Selostus: Pohjoismaisen geenipankin Prunus-kokoelma Suomessa : 1. Hapankirsikkakannat