987 resultados para gender recognition
Resumo:
Conventionally, biometrics resources, such as face, gait silhouette, footprint, and pressure, have been utilized in gender recognition systems. However, the acquisition and processing time of these biometrics data makes the analysis difficult. This letter demonstrates for the first time how effective the footwear appearance is for gender recognition as a biometrics resource. A footwear database is also established with reprehensive shoes (footwears). Preliminary experimental results suggest that footwear appearance is a promising resource for gender recognition. Moreover, it also has the potential to be used jointly with other developed biometrics resources to boost performance.
Resumo:
[EN]Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge.
Resumo:
Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.
Resumo:
Conventionally, biometrics resources, such as face, gait silhouette, footprint, and pressure, have been utilized in gender recognition systems. However, the acquisition and processing time of these biometrics data makes the analysis difficult. This letter demonstrates for the first time how effective the footwear appearance is for gender recognition as a biometrics resource. A footwear database is also established with reprehensive shoes (footwears). Preliminary experimental results suggest that footwear appearance is a promising resource for gender recognition. Moreover, it also has the potential to be used jointly with other developed biometrics resources to boost performance.
Resumo:
[EN]This paper presents recognition results based on a PCA representation and classification with SVMs and temporal coherence.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.
Resumo:
Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.
Resumo:
[EN]During the last decade, researchers have verified that clothing can provide information for gender recognition. However, before extracting features, it is necessary to segment the clothing region. We introduce a new clothes segmentation method based on the application of the GrabCut technique over a trixel mesh, obtaining very promising results for a close to real time system. Finally, the clothing features are combined with facial and head context information to outperform previous results in gender recognition with a public database.
Resumo:
[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.
Resumo:
Introduction: Coronary heart disease (CHD) is one of the leading causes of death in both men and women worldwide. Despite the common misconception that CHD is a ‘man's disease’, it is now well accepted that women endure worse clinical outcomes than men following CHD-related events. A number of studies have explored whether or not gender differences exist in patients presenting with CHD, and specifically whether women delay seeking help for cardiac conditions. UK and overseas studies on help-seeking for emergency cardiac events are contradictory, yet suggest that women often delay help-seeking. In addition, no studies have looked at presumed cardiac symptoms outside an emergency situation. Given the lack of understanding in this area, an explorative qualitative study on the gender differences in help-seeking for a non-emergency cardiac events is needed. Methods and analysis: A purposive sample of 20–30 participants of different ethnic backgrounds and ages attending a rapid access chest pain clinic will be recruited to achieve saturation. Semistructured interviews focusing on help-seeking decision-making for apparent cardiac symptoms will be undertaken. Interview data will be analysed thematically using qualitative software (NVivo) to understand any similarities and differences between the way men and women construct help-seeking. Findings will also be used to inform the preliminary development of a cardiac help-seeking intentions questionnaire. Ethics and dissemination: Ethical approvals were sought and granted. Namely, the University of Westminster (sponsor) and St Georges NHS Trust REC, and the Trust Research and Development Office granted approval to host the study on the Queen Mary's Roehampton site. The study is low risk, with interviews being conducted on hospital premises during working hours. Investigators will disseminate findings via presentations and publications. Participants will receive a written summary of the key findings.
Resumo:
The perceptive accuracy of university students was compared between men and women, from sciences and humanities courses, to recognize emotional facial expressions. emotional expressions have had increased interest in several areas involved with human interaction, reflecting the importance of perceptive skills in human expression of emotions for the effectiveness of communication. Two tests were taken: one was a quick exposure (0.5 s) of 12 faces with an emotional expression, followed by a neutral face. subjects had to tell if happiness, sadness, anger, fear, disgust or surprise was flashed, and each emotion was shown twice, at random. on the second test 15 faces with the combination of two emotional expressions were shown without a time limit, and the subject had to name one of the emotions of the previous list. in this study, women perceived sad expressions better while men realized more happy faces. there was no significant difference in other emotions detection like anger, fear, surprise, disgust. Students of humanities and sciences areas of both sexes, when compared, had similar capacities to perceive emotional expressions