963 resultados para gegenerative joint disease
Resumo:
Introduction: Cartilage degradation biomarkers are a potential tool for early diagnosis of degenerative joint disease (DJD). In young horses, Coll2-1 and Coll2-1NO2 have been studied in serum and reported to be useful in the assessment of joint disease. Fib3-2 has been described to be higher in serum of humans with osteoarthritis but was never assessed in horses. The aim of the current study was to evaluate biomarkers’ changes with age, sex and exercise and correlate them with DJD. Material and Methods: Blood collection and radiographic examination were performed in 51 Lusitanian horses. Moreover, inertial sensor-based detection of lameness was used to assess pain together with subjective examination. Results: Females presented significantly higher concentrations of Coll2-1 (p = 0.015) and Coll2-1NO2 (p = 0.014) compared to males. We have found significant influence of high level of work in lower concentration of Coll2-1 (p = 0.001) and significant influence of sex in concentration of Coll2-1NO2 (p = 0.030). There was no influence of sex, age and work on Fib3-2. All biomarkers were increased in the DJD group (n= 35) compared to healthy controls (n = 16). This difference was significant for Coll2-1 (p = 0.015). When sorted by sex and age groups, significant difference in Coll2-1 between disease and healthy controls disappeared in old horses and females. Discussion/ Conclusion: Coll2-1 is a good marker of cartilage degradation in horses with DJD, being more specific in young horses and males. Fib3-2 may be further explored to help identify disease in particular cases.
Resumo:
The proinflammatory cytokine IL-17 has an important role in pathogenesis of several inflammatory diseases. In immune-mediated joint diseases, IL-17 can induce secretion of other proinflammatory cytokines such as IL-1, IL-6 and TNF, as well as matrix metalloproteinase enzymes, leading to inflammation, cartilage breakdown, osteoclastogenesis and bone erosion. In animal models of inflammatory arthritis, mice deficient in IL-17 are less susceptible to development of disease. The list of IL-17-secreting cells is rapidly growing, and mast cells have been suggested to be a dominant source of IL-17 in inflammatory joint disease. However, many other innate sources of IL-17 have been described in both inflammatory and autoinflammatory conditions, raising questions as to the role of mast cells in orchestrating joint inflammation. This article will critically assess the contribution of mast cells and other cell types to IL-17 production in the inflammatory milieu associated with inflammatory arthritis, understanding of which could facilitate targeted therapeutic approaches. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
This review aims to summarise our knowledge to date on the protein complement of the synovial fluid (S F). The tissues, structure and pathophysiology of the synovial joint are briefly described. The salient features of the S F proteome, how it is composed and the influence of arthritic disease are highlighted and discussed. The concentrations of proteins that have been detected and quantified in SF are drawn together from the literature on osteoarthritis, rheumatoid arthritis and juvenile idiopathic arthritis. The measurements are plotted to give a perspective on the dynamic range of protein levels within the SF. Approaches to proteomic analysis of SF to date are discussed along with their findings. From the recent literature reviewed within, it is becoming increasingly clear that analysis of the SF proteome as a whole, could deliver the most valuable differential diagnostic fingerprints of a number of arthritic disorders. Further development of proteomic platforms could characterise prognostic profiles to improve the cliniciads ability to resolve unremitting disease by existing and novel therapeutics.
Resumo:
Foi realizado um estudo retrospectivo sobre os aspectos epidemiológicos e clínico-patológicos em bovinos e búfalos com doença articular degenerativa (DAD) no estado do Pará, Brasil. Durante os anos de 1999 a 2014 foram avaliados 11 bovinos e 24 bubalinos. Todos os animais atendidos com suspeita clínica de DAD foram submetidos a exame clínico do sistema locomotor. Foram necropsiados sete bovinos e oito bubalinos com sinais clínicos da enfermidade. Os sinais clínicos comuns observados em ambas as espécies foram claudicação crônica, andar rígido, alterações posturais, crepitações audíveis no membro acometido, decúbito prolongado, dificuldade para levantar, e emagrecimento progressivo. As lesões articulares evidenciadas na necropsia consistiram em irregularidade da superfície articular, presença de erosão na cartilagem articular e no tecido ósseo subjacente, proliferação de tecido ósseo periarticular com formação de osteófitos. Tanto nos bovinos como nos bubalinos as articulações mais acometidas foram as dos membros posteriores. Nos bubalinos, possivelmente o principal fator predisponente ao surgimento de DAD foi à deficiência de fósforo, ao contrário dos bovinos, nos quais os defeitos de conformação anatômica dos membros posteriores, traumas crônicos em virtude da atividade exercida, como a coleta de sêmen e a idade avançada, foram o que, possivelmente, contribuíram para surgimento da enfermidade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pain in the joint is often due to cartilage degeneration and represents a serious medical problem affecting people of all ages. Although many, mostly surgical techniques, are currently employed to treat cartilage lesions, none has given satisfactory results in the long term. Recent advances in biology and material science have brought tissue engineering to the forefront of new cartilage repair techniques. The combination of autologous cells, specifically designed scaffolds, bioreactors, mechanical stimulations and growth factors together with the knowledge that underlies the principles of cell biology offers promising avenues for cartilage tissue regeneration. The present review explores basic biology mechanisms for cartilage reconstruction and summarizes the advances in the tissue engineering approaches. Furthermore, the limits of the new methods and their potential application in the osteoarthritic conditions are discussed.
Resumo:
The medial arterial supply to 68 of the 72 coxofemoral joints of 36 medium to large breed dogs was examined ultrasonographically. The medial circumflex femoral artery and three branches were identified; the artery and its transverse branch were identified in all 68 joints, and the deep branch was identified in 61 joints, and the ascending branch was identified in 63. However, the acetabular and obturator branches were not identified. The pulsatility index, the mean velocity and the peak systolic velocity of the medial circumflex femoral artery were determined and associated with a radiographic score of degenerative coxofemoral joint disease and a lath distraction index (LDI). In joints with a LDI greater than 0.35, the pulsatility index was significantly lower (P=0.023) and its mean velocity was higher (P=0.005). However, no significant associations were observed in individual dogs when the measurements in both joints were taken into account.
Resumo:
Cartilage degradation biomarkers are a potential tool for early diagnosis of degen- erative joint disease (DJD). In young horses, Coll2-1 and Coll2-1NO2 have been studied in serum and reported to be useful in the assessment of joint disease. Fib3-2 has been described to be higher in serum of humans with osteoarthritis but has not been assessed in horses. The aim of the current study was to evaluate biomarkers’ changes with age, sex, and exercise and correlate them with DJD. Blood collection and radiographic examination were performed in 51 Lusitanian horses. Moreover, inertial sensor-based detection of lameness was used to assess pain together with sub- jective examination. Females presented significantly higher concentrations of Coll2- 1 (P5.015) and Coll2-1NO2 (P5.014) compared to males. We found significant influence of high level of work in lower concentration of Coll2-1 (P5.001) and sig- nificant influence of sex in concentration of Coll2-1NO2 (P5.030). There was no influence of sex, age and work on Fib3-2. All biomarkers were increased in the DJD group (n535) compared to healthy controls (n516). This difference was significant for Coll2-1 (P5.015). When sorted by sex and age groups, significant difference in Coll2-1 between disease and healthy controls disappeared in old horses and females. Coll2-1 is a good marker of cartilage degradation in horses with DJD, being more specific in young horses and males. Fib3-2 may be further explored to help identify disease in particular cases.
Resumo:
In podiatric clinics is very common to find inflamatory process in metatarsophalangeal joint capsule , plantar plate and collateral ligaments damage, but it is not clearly recognized. Many authors hipotetized with joint instability of multiple aetiology and his concomitant evolution in different stages with own joint disease. This pathology has more incidence in second metatarsophalangeal joint than third and others and it is a common etiology of metatarsal pain. Bad biomechanics alters forefoot function and can produce overload in capsular joint, decreasing mobility and getting worse the pathology.
Resumo:
In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.
Resumo:
Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease may manifest clinically as septic fever (40 degrees C), acute pseudogout attack of knee, wrist and shoulders, or as a variety of patterns of chronic inflammatory or degenerative joint disease. The association of pseudogout with fever is less widely recognised and may lead to over-investigation, delay in appropriate treatment and disproportionate costs. We report on a 67-year-old woman with a history of recurrent episodes of fever and polyarthritis every 2 months for the last 3 years. Because of this she was hospitalised several times, finally with suspected culture-negative endocarditis, and was treated for 6 weeks with gentamicin, rifampicin and vancomycin. During this therapy the patient again developed septic fever and acute arthritis of the right wrist. Radiographs of the wrist, knee and symphysis pubis revealed prominent chondrocalcinosis and destructive arthropathy.
Resumo:
The complexity of the equine skull makes the temporomandibular joint a difficult area to evaluate radiographically. The goal of this study was to determine the optimal angle for a complementary radiographic projection of the equine temporomandibular joint based on a computed tomography (CT) cadaver study. CT was performed on six equine cadaver heads of horses that were euthanized for other reasons than temporomandibular joint disease. After the CT examination, 3D reconstruction of the equine skull was performed to subjectively determine the angle for a complementary radiographic projection of the temporomandibular joint. The angle was measured on the left and right temporomandibular joint of each head. Based on the measurements obtained from the CT images, a radiographic projection of the temporomandibular joint in a rostra-145 degrees ventral-caudodorsal oblique (R45 degrees V-CdDO) direction was developed by placing the X-ray unit 30 degrees laterally, maintaining at the same time the R45 degrees V-CdDO angle (R45 degrees V30 degrees L-CdDLO). This radiographic projection was applied to all cadaver heads and on six live horses. In three of the live horses abnormal findings associated with the temporomandibular joint were detected. We conclude that this new radiographic projection of the temporomandibular joint provides superior visualization of the temporomandibular joint space and the articular surface of the mandibular condyle.
Resumo:
Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.
Resumo:
Osteoarthritis (OA) is a chronic, non-inflammatory type of arthritis, which usually affects the movable and weight bearing joints of the body. It is the most common joint disease in human beings and common in elderly people. Till date, there are no safe and effective diseases modifying OA drugs (DMOADs) to treat the millions of patients suffering from this serious and debilitating disease. However, recent studies provide strong evidence for the use of mesenchymal stem cell (MSC) therapy in curing cartilage related disorders. Due to their natural differentiation properties, MSCs can serve as vehicles for the delivery of effective, targeted treatment to damaged cartilage in OA disease. In vitro, MSCs can readily be tailored with transgenes with anti-catabolic or pro-anabolic effects to create cartilage-friendly therapeutic vehicles. On the other hand, tissue engineering constructs with scaffolds and biomaterials holds promising biological cartilage therapy. Many of these strategies have been validated in a wide range of in vitro and in vivo studies assessing treatment feasibility or efficacy. In this review, we provide an outline of the rationale and status of stem-cell-based treatments for OA cartilage, and we discuss prospects for clinical implementation and the factors crucial for maintaining the drive towards this goal.