973 resultados para gasification reaction rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gasification offers an environmentally friendly alternative for conventional combustion enabling the use of low grade and troublesome fuel such as municipal waste. While combustion converts fuel directly into thermal energy and noxious gases, gasification thermally converts fuel into gas that can be used in multiple applications. The purpose of this work is to get to know the gasification as a phenomenon and examine the kinetics of gasification. The main interest is in the reaction rates of the most important gasification reactions - water-gas, Boudouard and shift reaction. Reaction rate correlations found in the scientific articles are examined in atmospheric pressure in different temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asymptotic analysîs of the Eberstein-Glassman kinetic mechanlsm for the thermal décomposition of hydrazine is carried out. It is shown that at températures near 800°K and near 1000°K,and for hydrazine molar fractions of the order of unity, 10-2 the entire kinetics reduces to a single, overall reaction. Characteristic times for the chemical relaxation of ail active, intermediate species produced in the décomposition, and for the overall reaction, are obtained. Explicit expressions for the overall reaction rate and stoichiometry are given as functions of température, total molar concentration (or pressure)and hydrazine molar fraction. Approximate, patched expressions can then be obtained for values of température and hydrazine molar fraction between 750 and 1000°K, and 1 and 10-3 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionospheric Physics Laboratory Project 8653.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallics between the die and the cast alloy. It is generally believed that close to 1% Fe is necessary in the aluminium alloy to reduce soldering. However, the role of iron in the interfacial reaction has not been studied in detail. In this investigation, reaction couples were formed between H13 tool steel substrates and an Al-11Si-2.5Cu melt containing either 0.15 or 0.60% Fe. Examination revealed distinctly different intermetallic layer morphology. The overall growth and chemistry of the reaction layer and the reaction rate measured by the consumption of the substrate were compared for the two alloy melts. It was demonstrated that a higher iron content reduces the rate of interfacial reaction, consistent with an observed thicker compact ( solid) intermetallic layer. Hence, the difference in reaction rate can be explained by a significant reduction in the diffusion flux due to a thicker compact layer. Finally, the mechanism of the growth of a thicker compact layer in the higher iron melt is proposed, based on the phase relations and diffusion both within and near the interfacial reaction zone. (C) 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By using a matched asymptotic expansion technique, the shrinking core model (SCM) used in non-catalytic gas solid reactions with general kinetic expression is rigorously justified in this paper as a special case of the homogeneous model when the reaction rate is much faster than that of diffusion. The time-pendent velocity of the moving reacted-unreacted interface is found to be proportional to the gas flux at that interface for all geometries of solid particles, and the thickness order of the reaction zone and also the degree of chemical reaction at the interface is discussed in this paper.