981 resultados para gas storage
Resumo:
The storage capacity of an activated carbon bed is studied using a 2D transport model with constant inlet flow conditions. The predicted filling times and variation in bed pressure and temperature are in good agreement with experimental observations obtained using a 1.82 L prototype ANG storage cylinder. Storage efficiencies based on the maximum achievable V/V (volume of gas/volume of container) and filling times are used to quantify the performance of the charging process. For the high permeability beds used in the experiments, storage efficiencies are controlled by the rate of heat removal. Filling times, defined as the time at which the bed pressure reaches 3.5 MPa, range from 120 to 3.4 min for inlet flow rates of 1.0 L min(-1) and 30.0 L min(-1), respectively. The corresponding storage efficiencies, eta(s), vary from 90% to 76%, respectively. Simulations with L/D ratios ranging from 0.35 to 7.8 indicate that the storage efficiencies can be improved with an increase in the LID ratios and/or with water cooled convection. Thus for an inlet flow rate of 30.0 L min(-1), an eta(s) value of 90% can be obtained with water cooling for an L/D ratio of 7.8 and a filling time of a few minutes. In the absence of water cooling the eta(s) value reduces to 83% at the same L/D ratio. Our study suggests that with an appropriate choice of cylinder dimensions, solutions based on convective cooling during adsorptive storage are possible with some compromise in the storage capacity.
Resumo:
A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5 K and 45.5 K are predicted at the bed center for discharge rates of 1.0 l min(-1) and 5.0 l min(-1) respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the LID ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0 l min(-1) and 88.7% at 5 l min(-1). Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A simple methodology has been developed for the synthesis of functional nanoporous carbon (NPC) materials using a metal-organic framework (IRMOF-3) that can act as a template for external carbon precursor (viz, sucrose) and also a self-sacrificing carbon source. The resultant graphitic NPC samples (abbreviated as NPC-0, NPC-150, NPC-300, NPC-500 and NPC-1000 based on sucrose loading) obtained through loading different amounts of sucrose exhibit tunable textural parameters. Among these, NPC-300 shows very high surface area (BET approximate to 3119 m(2)/g, Langmuir approximate to 4031 m(2)/g) with a large pore volume of 1.93 cm(3)/g. High degree of porosity coupled with polar surface functional groups, make NPC-300 remarkable candidate for the uptake of H-2 (2.54 wt% at 1 bar, and 5.1 wt% at 50 bar, 77 K) and CO2 (64 wt% at 1 bar, 195 K and 16.9 wt% at 30 bar, 298 K). As a working electrode in a supercapacitor cell, NPC-300 shows excellent reversible charge storage thus, demonstrating multifunctional usage of the carbon materials. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Installed wind capacity in the European Union is expected to continue to increase due to renewable energy targets and obligations to reduce greenhouse gas emissions. Renewable energy sources such as wind power are variable sources of power. Energy storage technologies are useful to manage the issues associated with variable renewable energy sources and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in electric power systems and can be used in each of the steps of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothening the variability of large penetrations of wind power. Compress Air Energy Storage is one such technology. The aim of this paper is to examine the technical and economic feasibility of a combined gas storage and compressed air energy storage facility in the all-island Single Electricity Market of Northern Ireland and the Republic of Ireland in order to optimise power generation and wind power integration. This analysis is undertaken using the electricity market software PLEXOS ® for power systems by developing a model of a combined facility in 2020.
Resumo:
Copper containing MCM-41 materials can be used to both store gaseous nitric oxide and to catalytically produce nitric oxide from nitrite. The active species for the reaction is copper (I). Addition of cysteine to the solution in contact with the material has different effects depending on how much Cu(I) is present. This is a new method of extending the lifetime of gas delivery from a gas storage material.
Resumo:
Nitric oxide can be stored in and produced from zeolites in a simultaneous and cooperative process
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We review and present the set of equations used to assess the total storage capacity for which, contrarily to the absolute adsorption assessment, all its experimental variables can be determined experimentally without assumptions, ensuring the comparison of different porous storage materials for practical application. These material-based total storage capacities are calculated by taking into account the excess adsorption, the bulk density (ρbulk) and the true density (ρtrue) of the adsorbent. The impact of the material densities on the results are investigated for an exemplary hydrogen isotherm obtained at room temperature and up to 20 MPa. It turns out that the total storage capacity on a volumetric basis, which increases with both, ρbulk and ρtrue, is the most appropriate tool for comparing the performance of storage materials. However, the use of the total storage capacities on a gravimetric basis cannot be recommended, because low material bulk densities could lead to unrealistically high gravimetric values.
Resumo:
In relation to the current interest on gas storage demand for environmental applications (e.g., gas transportation, and carbon dioxide capture) and for energy purposes (e.g., methane and hydrogen), high pressure adsorption (physisorption) on highly porous sorbents has become an attractive option. Considering that for high pressure adsorption, the sorbent requires both, high porosity and high density, the present paper investigates gas storage enhancement on selected carbon adsorbents, both on a gravimetric and on a volumetric basis. Results on carbon dioxide, methane, and hydrogen adsorption at room temperature (i.e., supercritical and subcritical gases) are reported. From the obtained results, the importance of both parameters (porosity and density) of the adsorbents is confirmed. Hence, the densest of the different carbon materials used is selected to study a scale-up gas storage system, with a 2.5 l cylinder tank containing 2.64 kg of adsorbent. The scale-up results are in agreement with the laboratory scale ones and highlight the importance of the adsorbent density for volumetric storage performances, reaching, at 20 bar and at RT, 376 g l-1, 104 g l-1, and 2.4 g l-1 for CO2, CH4,and H2, respectively.
Resumo:
Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).
Resumo:
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.
Resumo:
The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 . With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.
Resumo:
O potencial de um reservatório de shale gas e influenciado por um grande número de fatores, tais como a sua mineralogia e textura, o seu tipo e maturação de querogénio, a saturação de fluidos, os mecanismos de armazenamento de gás, a profundidade do reservatório e a temperatura e pressão de poros. Nesse sentido, o principal objetivo desta tese foi estabelecer uma metodologia de avaliação preliminar de potenciais jazigos de shale gas (estudo de afloramentos com base numa litoestratigrafia de alta resolução), que foi posteriormente aplicada na Formação de Vale das Fontes (Bacia Lusitânica, Portugal). Esta tese tem a particularidade de contribuir, não só para o aprofundamento da informação a nível geoquímico do local, mas também na abordagem inovadora que permitiu a caracterização petrofísica da Formação de Vale das Fontes. Para a aplicação da metodologia estabelecida, foi necessária a realização dos seguintes ensaios laboratoriais: Rock-Eval 6, picnometria de gás hélio, ensaio de resistência a compressão simples, Darcypress e a difracção de raios-X, aplicando o método de Rietveld. Os resultados obtidos na análise petrofísica mostram uma formação rochosa de baixa porosidade que segundo a classificação ISRM, e classificada como ”Resistente”, para alem de revelar comportamento dúctil e elevado índice de fragilidade. A permeabilidade média obtida situa a Formação no intervalo correspondente as permeabilidades atribuídas aos jazigos de tigh gas, indicando a necessidade de fracturação hidráulica, no caso de uma eventual exploração de hidrocarbonetos, enquanto a difracção de raios-X destaca a calcite, o quartzo e os filossilicatos como os minerais mais presentes na Formação. Do ponto de vista geoquímico, os resultados obtidos mostram que apesar do considerável teor médio de carbono orgânico total, a natureza da matéria orgânica analisada e maioritariamente imatura, composta, principalmente, por querogénio do tipo IV, o que indica a incapacidade de a formação gerar hidrocarbonetos em quantidades economicamente exploráveis.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.