951 resultados para gas dispersion characteristics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For nearly 100 years, the flotation plant metallurgist has often wondered what is happening 'beneath the froth'. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterization measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3% to 20%, bubble sizes range between I and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterization measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For nearly 100 years, the flotation plant metallurgist has often wondered what is happening ‘beneath the froth’. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterisation measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3 - 20 per cent, bubble sizes range between 1 and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterisation measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the Exxon Valdez accident in 1987, renewed interest has come forth to better understand and predict the fate and transport of crude oil lost to marine environments. The short-term fate of an Arabian Crude oil was simulated in laboratory experiments using artificial seawater. The time-dependent changes in the rheological and chemical properties of the oil under the influence of natural weathering processes were characterized, including dispersion behavior of the oil under simulated ocean turbulence. Methodology included monitoring the changes in the chemical composition of the oil by Gas Chromatography/Mass Spectrometry (GCMS), toxicity evaluations for the oil dispersions by Microtox analysis, and quantification of dispersed soluble aromatics by fluorescence spectrometry. Results for this oil show a sharp initial increase in viscosity, due to evaporative losses of lower molecular weight hydrocarbons, with the formation of stable water-in-oil emulsions occurring within one week. Toxicity evaluations indicate a decreased EC-50 value (higher toxicity) occurring after the oil has weathered eight hours, with maximum toxicity being observed after weathering seven days. Particle charge distributions, determined by electrophoretic techniques using a Coulter DELSA 440, reveal that an unstable oil dispersion exists within the size range of 1.5 to 2.5 um, with recombination processes being observed between sequential laser runs of a single sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dispersion characteristics and topography of electromagnetic fields of axially symmetric surface waves (SW) and of azimuth surface waves (ASW) propagating in a structure composed of a cylindrical metal antenna and magnetoactive plasma are investigated. The antenna and plasma may be separated by a vacuum layer. The dispersion characteristics of SW and ASW are presented as functions of the antenna and the magnetoactive plasma parameters. Close agreement between theory and experimental results are shown. Surface impedances of the SW and ASW are calculated for various parameters of the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical expressions are derived, using asymptotics, for the fluid-structure coupled wavenumbers in a one-dimensional (1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation with an added term due to the fluid-structure coupling. As a result of this coupling, the prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an-intersection in the coupled case, but a gap is created at that frequency. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas sensing characteristics of YBa2Cu3O7−δ, La2−x SrxCuO4, and Bi2Y1−xCaxSr2Cu2O8 have been examined. La2−x SrxCuO4 (x = 0.075), and Bi2YSr2Cu2O8 are found to show good sensitivity (≈10 ppm) to ethyl alcohol and such vapours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we show with some formalism that infinite flexible structural acoustic waveguides have a general form for the dispersion equation. The dispersion equation of all such waveguides should conform to a generic form. This allows us to bring out the common features of structural acoustic waveguides. We take three examples to demonstrate this fact, namely, the rectangular, the circular cylindrical and the elliptical geometries. Where necessary, the equations are simplified for applicability to a particular frequency-regime before demonstrating the conformance to the generic form of the dispersion relation. It is then shown that the coupled wavenumber solutions of all these systems can be represented on a single schematic.