876 resultados para gas cromatography
Resumo:
This paper describes variations in the profile of the main volatile organic compounds present in Brazilian sugar cane spirits distilled in copper and stainless steel distillers. The main organic compounds: aldehydes, ketones, carboxylic acids, alcohols and esters, were determined through High Performance Liquid Chromatography (HPLC) and High Resolution Gas Cromatography (HRGC). The spirits produced in copper distillers exhibit higher contents of aldehydes with respect to the ones produced in stainless steel. The inverse is true with respect to the higher alcohol and ester contents. No significant variation has been observed for the carboxylic acids.
Resumo:
This review presents an updated overview of the trace element speciation by gas chromatography coupled with atomic absorption spectrometry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Spills can ocurr during oil productive chain and contaminate various environments due to the toxicity of monoaromatics hidrocarbons. Toluene stands out for being agressive to the nervous sistem and teratogenic, with high mobility and solubility in water, which facilitates environmental impact. Studies show that fungi are potential aromatic compounds assimilators, encouraging new researches about its use on the recovery of contaminated sites. This study aimed to select and characterize fungus with potential for biorremediation of toluene. 50 fungi were selected of the Collection of Microorganisms of Interest for Oil Gas and Biofuels, of UNESP Rio Claro, all of which were isolated from sites contaminated with monoaromatic hydrocarbons. Two trials were realized to select the microorganism with greater potential. The first test evaluated fungal growth under toluene saturated atmosphere. 24 fungi were chosen because its greater biomass production to participate in the next trial, the degradation in plates test, where the blue redox agente, DCPIP, indicates the degradation reaction, turning colorless. From this teste was possible to select one isolate which showed higher growth and stronger medium discoloration as the microorganism with the greatest potential to assimilate toluene. The Trichoderma cf. koningii had its potential evaluated through gas cromatography. The experiment proved the efficiency of the methodology, with positives results from the method validation and the effectiveness demonstrated of the LA-PHA-PACK bottles to prevent the volatilization of toluene during the 21 days of experiment. Being reliable its use for monitoring toluene decay associating it with degradation. This results are important because there aren't many methodologies and vials efficient to the purpose of this work. In the present study the degradation rates demonstrated no significant decay of the concentration of hydrocarbon. That may be related to the...
Estudo da presenca de HPA no Estuario de Sao Vicente utilizando o diatomito como material amostrador
Resumo:
The objective of this study was to determine the antioxidant effect of essential oregano and alfavaca oil on the fatty acid profile of palm oil, used in industrial potato chips processing, aiming to reduce the oxidative state of palm oil. Essential oregano oil was obtained from industrial residues and commercial essential oregano oil was also acquired. The antioxidant activity of Oregano’s essential oil was taken by DPPH method. The DPPH analysis of the essential oil of oregano residue resulted in an IC50 of 797.04 mg.mL-1 and the essential oil of commercial oregano was 424.25 mg.mL-1. Regarding the content of total phenols, the essential oil of commercial oregano showed 0.167 ± 0.058 ug EAG.g-1. Based on these results, concentrations of 50, 100 e 150ug.g-1 of commercial oregano essential oil was added to palm oil and the fatty acid profile was determined by gas cromatography. Analysis were done with palm oil without being used in frying processes and without added essential oil, as well as with the different essential oil concentrations submitted at three frying processes at one single day. In the second part of the project, the effect of oreganos’s comercial essential oil compared to alfavacão essential oil, at the concentration of 100ug.g-1 in palm oil, and submitted to three frying processes during eleven cycles, was studied. The lipid profile was similar to that described in the literature, which an increase in the number of frying times caused a polyunsaturated fatty acids decrease and, therefore, a proportional increase in saturated fatty acids. It was noted an increase in the amounts of total saturated fatty acids from 43.36% (control) to 43.60% (palm oil with essential oil after 11 frying cycles at the concentration of 100ug.g-1). This fact proves that during the frying process, there is an increase in the rate of formation of saturated fatty acids. However, the addition of oregano essential oil did not provide significant change in the fatty acids of palm oil used in frying process of potato chips. The addition of oregano essential oil in a concentration of 100 ug./mL-1 until the third frying cycle showed a reduction effect of trans fatty acid formation. Although, during 11 frying cycles it was not noticed the essential oil effect under trans fatty acid formation. It can be suggested that this factor may be correlated to the frying time, which may not have been sufficient for significant formation of saturated and trans compounds.
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2 , was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.