999 resultados para galois group


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12F12, 15A66.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sei $N/K$ eine galoissche Zahlkörpererweiterung mit Galoisgruppe $G$, so dass es in $N$ eine Stelle mit voller Zerlegungsgruppe gibt. Die vorliegende Arbeit beschäftigt sich mit Algorithmen, die für das gegebene Fallbeispiel $N/K$, die äquivariante Tamagawazahlvermutung von Burns und Flach für das Paar $(h^0(Spec(N), \mathbb{Z}[G]))$ (numerisch) verifizieren. Grob gesprochen stellt die äquivariante Tamagawazahlvermutung (im Folgenden ETNC) in diesem Spezialfall einen Zusammenhang her zwischen Werten von Artinschen $L$-Reihen zu den absolut irreduziblen Charakteren von $G$ und einer Eulercharakteristik, die man in diesem Fall mit Hilfe einer sogenannten Tatesequenz konstruieren kann. Unter den Voraussetzungen 1. es gibt eine Stelle $v$ von $N$ mit voller Zerlegungsgruppe, 2. jeder irreduzible Charakter $\chi$ von $G$ erfüllt eine der folgenden Bedingungen 2a) $\chi$ ist abelsch, 2b) $\chi(G) \subset \mathbb{Q}$ und $\chi$ ist eine ganzzahlige Linearkombination von induzierten trivialen Charakteren; wird ein Algorithmus entwickelt, der ETNC für jedes Fallbeispiel $N/\mathbb{Q}$ vollständig beweist. Voraussetzung 1. erlaubt es eine Idee von Chinburg ([Chi89]) umzusetzen zur algorithmischen Berechnung von Tatesequenzen. Dabei war es u.a. auch notwendig lokale Fundamentalklassen zu berechnen. Im höchsten zahm verzweigten Fall haben wir hierfür einen Algorithmus entwickelt, der ebenfalls auf den Ideen von Chinburg ([Chi85]) beruht, die auf Arbeiten von Serre [Ser] zurück gehen. Für nicht zahm verzweigte Erweiterungen benutzen wir den von Debeerst ([Deb11]) entwickelten Algorithmus, der ebenfalls auf Serre's Arbeiten beruht. Voraussetzung 2. wird benötigt, um Quotienten aus den $L$-Werten und Regulatoren exakt zu berechnen. Dies gelingt, da wir im Fall von abelschen Charakteren auf die Theorie der zyklotomischen Einheiten zurückgreifen können und im Fall (b) auf die analytische Klassenzahlformel von Zwischenkörpern. Ohne die Voraussetzung 2. liefern die Algorithmen für jedes Fallbeispiel $N/K$ immer noch eine numerische Verifikation bis auf Rechengenauigkeit. Den Algorithmus zur numerischen Verifikation haben wir für $A_4$-Erweiterungen über $\mathbb{Q}$ in das Computeralgebrasystem MAGMA implementiert und für 27 Erweiterungen die äquivariante Tamagawazahlvermutung numerisch verifiziert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse  problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.   In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear differential equations where the coefficients are differential polynomials in $l$ differential indeterminates over an algebraically closed field of constants $C$, i.e. our differential ground field is purely differential transcendental over the constants.   For the groups of type $A_l$, $B_l$, $C_l$, $D_l$ and $G_2$ we managed to do these realizations at the same time in terms of Abhyankar's program 'Nice Equations for Nice Groups'. Here the choice of the defining matrix is important. We found out that an educated choice of $l$ negative roots for the parametrization together with the positive simple roots leads to a nice differential equation and at the same time defines a sufficiently general element of the Lie algebra. Unfortunately for the groups of type $F_4$ and $E_6$ the linear differential equations for such elements are of enormous length. Therefore we keep in the case of $F_4$ and $E_6$ the defining matrix differential equation which has also an easy and nice shape.   The basic idea for the realization is the application of an upper and lower bound criterion for the differential Galois group to our parameter equations and to show that both bounds coincide. An upper and lower bound criterion can be found in literature. Here we will only use the upper bound, since for the application of the lower bound criterion an important condition has to be satisfied. If the differential ground field is $C_1$, e.g., $C(z)$ with standard derivation, this condition is automatically satisfied. Since our differential ground field is purely differential transcendental over $C$, we have no information whether this condition holds or not.   The main part of this thesis is the development of an alternative lower bound criterion and its application. We introduce the specialization bound. It states that the differential Galois group of a specialization of the parameter equation is contained in the differential Galois group of the parameter equation. Thus for its application we need a differential equation over $C(z)$ with given differential Galois group. A modification of a result from Mitschi and Singer yields such an equation over $C(z)$ up to differential conjugation, i.e. up to transformation to the required shape. The transformation of their equation to a specialization of our parameter equation is done for each of the above groups in the respective transformation lemma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G be a finite group, F a field, FG the group ring of G over F, and J(FG) the Jacobson radical of FG. Using a result of Berman and Witt, we give a method to determine the structure of the center of FG/J(FG), provided that F satisfies a field theoretical condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this work is find a description for fields of two power conductor. By the Kronecker-Weber theorem, these amounts to find the subfields of cyclotomic field $\mathbb{Q}(\xi_{2^r})$, where $\xi_{2^r}$ is a $2^r$-th primitive root of unit and $r$ a positive integer. In this case, the cyclotomic extension isn't cyclic, however its Galois group is generated by two elements and the subfield can be expressed by $\mathbb{Q}(\theta)$ for a $\theta\in\mathbb{Q}(\xi_{2^r})$ convenient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12F12

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide more efficient and flexible alternatives for the applications of secret sharing schemes, this paper describes a threshold sharing scheme based on exponentiation of matrices in Galois fields. A significant characteristic of the proposed scheme is that each participant has to keep only one master secret share which can be used to reconstruct different group secrets according to the number of threshold values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.