26 resultados para galloping
Resumo:
Transverse galloping is a type of aeroelastic instability characterised by large amplitude, low frequency oscillation of a structure in the direction normal to the mean wind direction. It normally appears in bodies with small stiffness and structural damping, provided the incident flow velocity is high enough. In the simplest approach transverse galloping can be considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which in turn can be described by using a quasi-steady description. In this frame it has been demonstrated that hysteresis phenomena in transverse galloping is related to the existence of inflection points in the curve giving the dependence with the angle of attack of the aerodynamic coefficient normal to the incident flow. Aiming at experimentally checking such a relationship between these inflection points and hysteresis, wind tunnel experiments have been conducted. Experiments have been restricted to isosceles triangular cross-section bodies, whose galloping behaviour is well documented. Experimental results show that, according to theoretical predictions, hysteresis takes place at the angles of attack where there are inflection points in the lift coefficient curve, provided that the body is prone to gallop at these angles of attack.
Resumo:
This paper presents the experimental study developed on a prismatic beam with H section, sometimes used in bridges as suspenders, vertical bars or decks. The purpose of this study is to understand the physical behavior of the air around this type of section, in order to reduce the aerodynamic loads, the onset speed of galloping and even to avoid it. To achieve this, a study of the influence of all geometric parameters that define the section has been developed. Previously, the most interesting configurations have been selected using a smoke flow visualization technique in the wind-tunnel, then the corresponding static aerodynamic loads were measured, completed with dynamic tests and, finally, the parameters governing the phenomenon of galloping determined.
Resumo:
The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.
Resumo:
Transverse galloping is a type of aeroelastic instability characterized by oscillations perpendicular to wind direction, large amplitude and low frequency, which appears in some elastic two-dimensional bluff bodies when they are subjected to an incident flow, provided that the flow velocity exceeds a threshold critical value. Understanding the galloping phenomenon of different cross-sectional geometries is important in a number of engineering applications: for energy harvesting applications the interest relies on strongly unstable configurations but in other cases the purpose is to avoid this type of aeroelastic phenomenon. In this paper the aim is to analyze the transverse galloping behavior of rhombic bodies to understand, on the one hand, the dependence of the instability with a geometrical parameter such as the relative thickness and, on the other hand, why this cross-section shape, that is generally unstable, shows a small range of relative thickness values where it is stable. Particularly, the non-galloping rhombus-shaped prism?s behavior is revised through wind tunnel experiments. The bodies are allowed to freely move perpendicularly to the incoming flow and the amplitude of movement and pressure distributions on the surfaces is measured.
Resumo:
Transverse galloping is a type of aeroelastic instability characterized by large amplitude, low frequency, normal to wind oscillations that appear in some elastic two-dimensional bluff bodies when subjected to a fluid flow, provided that the flow velocity exceeds a threshold critical value. Such an oscillatory motion is explained because of the energy transfer from the flow to the two-dimensional bluff body. The 7 amount of energy that can be extracted depends on the cross section of the galloping prism. Assuming that the Glauert-Den Hartog quasistatic criterion for galloping instability is satisfied in a first approximation, the suitability of a given cross section for energy harvesting is evaluated by analyzing the lateral aerodynamic force coefficient, fitting a function with a power series in tan a (a being the angle of attack) to 10 available experimental data. In this paper, a fairly large number of simple prisms (triangle, ellipse, biconvex, and rhombus cross sections, as well 11 as D-shaped bodies) is analyzed for suitability as energy harvesters. The influence of the fitting process in the energy harvesting efficiency evaluation is also demonstrated. The analysis shows that the more promising bodies are those with isosceles or approximate isosceles cross sections.
Resumo:
Modern design of civil constructions such as office blocks, airport terminal buildings, factories, etc. incorporates more and more environmental considerations that lead to, amongst other elements, the use of glazed façades with shading devices to optimize energy consumption. These shading devices, normally slats or louvers, are very flexible structures exposed to the action of wind, and therefore aeroelastic effects such as galloping must be taken into account in their design. A typical cross-section for such elements is a Z-shaped profile made out of a central web and two side wings. The results of a parametric analysis based on static wind tunnel tests and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper.
Resumo:
A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.
Resumo:
The possibility of transverse galloping of a square cylinder at low Reynolds numbers (Re≤200Re≤200, so that the flow is presumably laminar) is analysed. Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to fluid forces, which are described by using the quasi-steady hypothesis (time-averaged data are extracted from previous numerical simulations). Approximate solutions are obtained by means of the method of Krylov-Bogoliubov, with two major conclusions: (i) a square cylinder cannot gallop below a Reynolds number of 159 and (ii) in the range 159≤Re≤200159≤Re≤200 the response exhibits no hysteresis.
Resumo:
Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which are described by using the quasi-steady hypothesis. The hysteresis of transverse galloping is also analyzed. Approximate solutions of the model are obtained by assuming that the aerodynamic and damping forces are much smaller than the inertial and stiffness ones. The analysis of the approximate solution, which is obtained by means of the method of Krylov–Bogoliubov, reveals the existing link between the hysteresis phenomenon and the number of inflection points at the aerodynamic force coefficient curve, Cy(α)Cy(α); CyCy and αα being, respectively, the force coefficient normal to the incident flow and the angle of attack. The influence of the position of these inflection points on the range of flow velocities in which hysteresis takes place is also analyzed.
Resumo:
Publisher's ads 40 p. at end.
Resumo:
Sequel: The king's highway.
Resumo:
The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.
Resumo:
O Transtorno do pânico (TP) é um transtorno mental comum que afeta até 5% da população em algum momento da vida, sendo caracterizada pela presença de ataques de pânico (AP) recorrentes. Constitui uma psicopatologia que pode ser afetada pela privação do sono (PS), relação que ainda é pouco compreendida. Neste contexto, modelos experimentais de AP e de PS são ferramentas úteis na investigação dessa possível correlação, especialmente motivado pela crescente condição de privação de sono, que tem se tornado cada vez mais frequente na sociedade moderna. Assim, este estudo avaliou os efeitos da privação de sono paradoxal (PSP) sobre os limiares dos comportamentos defensivos induzidos por estimulação intracraniana (EI) da MCPD e CS de ratos num modelo experimental de AP, assim como verificou a influência da corticosterona sobre esses limiares. Foram utilizados 160 ratos Wistar machos (300g), organizados em 4 grupos com 40 animais cada, como se segue: Grupo Controle (CTR) submetido à EI, porém sem PSP; Grupo Privação (PRV), submetido à EI e privado por 96 horas; Grupo Privação + Bloqueio da corticosterona (PRB), submetido ao tratamento com metirapona, EI, e privado por 96 horas, e Grupo Controle + Bloqueio da corticosterona (CTB), submetido ao tratamento com metirapona e EI, porém sem privação de sono. Após 10 dias do implante cirúrgico intracraniano de eletrodo na MCPD e CS, os animais passaram por 5 sessões de estimulação, como se segue: 1ª (TRI) considerada triagem - imediatamente antes da privação, 2ª (P48) após 48h de privação, 3ª (P96) após 96h de privação, 4ª (R48) após 48h de retirada da privação e 5ª (R96) após 96h de retirada da privação. As curvas de limiares das respostas individuais de defesa obtidas nas várias sessões de estimulação da MCPD e CS (TRI, P48, P96, R48 e R96) dos ratos foram comparadas entre si, bem como as curvas de limiares de uma dada resposta nos diferentes grupos (CTR, PRV, CTB e PRB). Além disso, os níveis de corticosterona (CORT) foram dosados nas diferentes sessões de EI, e comparadas num mesmo grupo, bem como nos diferentes grupos. No grupo CTR, todos os comportamentos foram iguais em todas as sessões quando comparados à TRI, entretanto, nos animais privados (PRV), o limiar do galope (GLP) reduziu significativamente em R48 e R96, não ocorrendo xix alterações nos demais comportamentos. Em contraste, no grupo PRB, o Trote (TRT) aumentou a partir de P48, enquanto o GLP não foi alterado em nenhuma sessão de EI. Na comparação entre os grupos, em Salto (SLT), Micção (MIC), Exoftalmia (EXO), Imobilidade (IMO), Defecação (DEF), TRT e GLP, não sofreram alterações decorrentes da CORT produzida decorrente da PSP, sugerindo que a corticosterona não altera os comportamentos defensivos característicos do Ataque de Pânico. Em adição, tais resultados sugerem que os efeitos tardios da PSP sobre os limiares de GLP possivelmente se devam a mecanismos neuroquímicos tempo-dependente.
Resumo:
ABSTRACTThis paper analyzes Joan Robinson's growth model, and then adapted in order to provide an exploratory taxonomy of Growth Eras. The Growth Eras or Ages were for Robinson a way to provide logical connections among output growth, capital accumulation, the degree of thriftiness, the real wage and illustrate a catalogue of growth possibilities. This modified taxonomy follows the spirit of Robinson's work, but it takes different theoretical approaches, which imply that some of her classifications do not fit perfectly the ones here suggested. Latin America has moved from a Golden Age in the 1950s and 1960s, to a Leaden Age in the 1980s, having two traverse periods, one in which the process of growth and industrialization accelerated in the late 1960s and early 1970s, which is here referred to as a Galloping Platinum Age, and one in which a process of deindustrialization, and reprimarization and maquilization of the productive structure took place, starting in the 1990s, which could be referred to as a Creeping Platinum Age.