739 resultados para galaxies : ISM


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultraluminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of M UV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically confirmed SNe known to date. The spectrum exhibits broad absorption features typical of previous ULSNe (e.g., C II, Si III), and strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]λ3727 emission line at the same redshift. The equivalent widths of the Fe II λ2600 and Mg II λ2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of τ* ≈ 15-45 Myr and a stellar mass of M * ≈ (1.1-2.6) × 109 M ⊙ (for Z = 0.05-1 Z ⊙). The star formation rate inferred from the UV continuum and [O II]λ3727 emission line is ≈10 M ⊙ yr-1, higher than in previous ULSN hosts. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the ISM in distant galaxies. The depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z ~ 1-2); the future combination of LSST and 30 m class telescopes promises to extend this technique to z ~ 4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The width of the 21 cm line (HI) emitted by spiral galaxies depends on the physical processes that release energy in the Interstellar Medium (ISM). This quantity is called velocity dispersion (σ) and it is proportional first of all to the thermal kinetic energy of the gas. The accepted theoretical picture predicts that the neutral hydrogen component (HI) exists in the ISM in two stable phases: a cold one (CNM, with σ~0.8 km/s) and a warm one (WNM, with σ~8 km/s). However, this is called into question by the observation that the HI gas has usually larger velocity dispersions. This suggests the presence of turbulence in the ISM, although the energy sources remain unknown. In this thesis we want to shed new light on this topic. We have studied the HI line emission of two nearby galaxies: NGC6946 and M101. For the latter we used new deep observations obtained with the Westerbork radio interferometer. Through a gaussian fitting procedure, we produced dispersion maps of the two galaxies. For both of them, we compared the σ values measured in the spiral arms with those in the interarms. In NGC6946 we found that, in both arms and interarms, σ grows with the column density, while we obtained the opposite for M 101. Using a statistical analysis we did not find a significant difference between arm and interarm dispersion distributions. Producing star formation rate density maps (SFRD) of the galaxies, we studied their global and local relations with the HI kinetic energy, as inferred from the measured dispersions. For NGC6946 we obtained a good log-log correlation, in agreement with a simple model of supernova feedback driven turbulence. This shows that in this galaxy turbulent motions are mainly induced by the stellar activity. For M 101 we did not find an analogous correlation, since the gas kinetic energy appears constant with the SFRD. We think that this may indicate that in this galaxy turbulence is driven also by accretion of extragalactic material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a new, accurate measurement of the H I mass function of galaxies from the HIPASS Bright Galaxy Catalog, a sample of 1000 galaxies with the highest H I peak flux densities in the southern (delta

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in H I selected galaxies. The survey consists of H alpha and R-band imaging of a sample of 468 galaxies selected from the H I Parkes All Sky Survey (HIPASS). The sample spans three decades in H I mass and is free of many of the biases that affect other star-forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single emission line galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H alpha, indicating that dormant (non-star-forming) galaxies with M-H I greater than or similar to 3x10(7) M-circle dot are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans 4 orders of magnitude in luminosity (H alpha and R band), and H alpha surface brightness, nearly 3 orders of magnitude in R surface brightness and nearly 2 orders of magnitude in H alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey (SDSS) spectroscopic sample, the EW distribution is broader than prism-selected samples, and the morphologies found include all common types of star-forming galaxies (e.g., irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). Thus, SINGG presents a superior census of star formation in the local universe suitable for further studies ranging from the analysis of H II regions to determination of the local cosmic star formation rate density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we calculate the escape fraction (f(esc)) of ionizing photons from starburst galaxies. Using 2D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the centre of the disc along different angles through the superbubble and the gas disc. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of similar to 40 degrees, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scaleheights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed similar to1 - cos (1 rad)] = 0.5 from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time-and angle-averaged escape fraction on the mid-plane disc gas density (in the range n(0) = 0.15-50 cm(-3)) and the disc scaleheight (between z(0) = 10 and 600 pc). We find that the escape fraction is related to the disc parameters (the mid-plane disc density and scaleheight) roughly so that f(esc)(alpha)n(0)(2)z(0)(3) (with alpha approximate to 2.2) is a constant. For discs with a given warm neutral medium temperature, massive discs have lower escape fraction than low-mass galaxies. For Milky Way ISM parameters, we find f(esc) similar to 5 per cent, and it increases to approximate to 10 per cent for a galaxy 10 times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the Universe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VISTA Variables in the Via Lactea (VVV) is an ESO variability survey that is performing observations in near-infrared bands (ZY JHK(s)) toward the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than Two Micron All Sky Survey. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZY JHK(s) photometry that covers 1.636 deg(2). We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZY JHK(s)) images. The galaxy candidate colors were also compared with the predicted ones by star count models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Millennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii, and ZY JHK(s) magnitudes is provided, as well as comparisons of the results with other surveys of galaxies toward the Galactic plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seyfert galaxies are the closest active galactic nuclei. As such, we can use them to test the physical properties of the entire class of objects. To investigate their general properties, I took advantage of different methods of data analysis. In particular I used three different samples of objects, that, despite frequent overlaps, have been chosen to best tackle different topics: the heterogeneous BeppoS AX sample was thought to be optimized to test the average hard X-ray (E above 10 keV) properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to compare the properties of low-luminosity sources to the ones of higher luminosity and, thus, it was also used to test the emission mechanism models; finally, the XMM–Newton sample was extracted from the X-CfA sample so as to ensure a truly unbiased and well defined sample of objects to define the average properties of Seyfert galaxies. Taking advantage of the broad-band coverage of the BeppoS AX MECS and PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (~1.8), the high-energy cut-off (~290 keV), and the relative amount of cold reflection (~1.0). Moreover the unified scheme for active galactic nuclei was positively tested. The distribution of isotropic indicators used here (photon index, relative amount of reflection, high-energy cut-off and narrow FeK energy centroid) are similar in type I and type II objects while the absorbing column and the iron line equivalent width significantly differ between the two classes of sources with type II objects displaying larger absorbing columns. Taking advantage of the XMM–Newton and X–CfA samples I also deduced from measurements that 30 to 50% of type II Seyfert galaxies are Compton thick. Confirming previous results, the narrow FeK line is consistent, in Seyfert 2 galaxies, with being produced in the same matter responsible for the observed obscuration. These results support the basic picture of the unified model. Moreover, the presence of a X-ray Baldwin effect in type I sources has been measured using for the first time the 20-100 keV luminosity (EW proportional to L(20-100)^(−0.22±0.05)). This finding suggests that the torus covering factor may be a function of source luminosity, thereby suggesting a refinement of the baseline version of the unifed model itself. Using the BeppoSAX sample, it has been also recorded a possible correlation between the photon index and the amount of cold reflection in both type I and II sources. At a first glance this confirms the thermal Comptonization as the most likely origin of the high energy emission for the active galactic nuclei. This relation, in fact, naturally emerges supposing that the accretion disk penetrates, depending to the accretion rate, the central corona at different depths (Merloni et al. 2006): the higher accreting systems hosting disks down to the last stable orbit while the lower accreting systems hosting truncated disks. On the contrary, the study of the well defined X–C f A sample of Seyfert galaxies has proved that the intrinsic X-ray luminosity of nearby Seyfert galaxies can span values between 10^(38−43) erg s^−1, i.e. covering a huge range of accretion rates. The less efficient systems have been supposed to host ADAF systems without accretion disk. However, the study of the X–CfA sample has also proved the existence of correlations between optical emission lines and X-ray luminosity in the entire range of L_(X) covered by the sample. These relations are similar to the ones obtained if high-L objects are considered. Thus the emission mechanism must be similar in luminous and weak systems. A possible scenario to reconcile these somehow opposite indications is assuming that the ADAF and the two phase mechanism co-exist with different relative importance moving from low-to-high accretion systems (as suggested by the Gamma vs. R relation). The present data require that no abrupt transition between the two regimes is present. As mentioned above, the possible presence of an accretion disk has been tested using samples of nearby Seyfert galaxies. Here, to deeply investigate the flow patterns close to super-massive black-holes, three case study objects for which enough counts statistics is available have been analysed using deep X-ray observations taken with XMM–Newton. The obtained results have shown that the accretion flow can significantly differ between the objects when it is analyzed with the appropriate detail. For instance the accretion disk is well established down to the last stable orbit in a Kerr system for IRAS 13197-1627 where strong light bending effect have been measured. The accretion disk seems to be formed spiraling in the inner ~10-30 gravitational radii in NGC 3783 where time dependent and recursive modulation have been measured both in the continuum emission and in the broad emission line component. Finally, the accretion disk seems to be only weakly detectable in rk 509, with its weak broad emission line component. Finally, blueshifted resonant absorption lines have been detected in all three objects. This seems to demonstrate that, around super-massive black-holes, there is matter which is not confined in the accretion disk and moves along the line of sight with velocities as large as v~0.01-0.4c (whre c is the speed of light). Wether this matter forms winds or blobs is still matter of debate together with the assessment of the real statistical significance of the measured absorption lines. Nonetheless, if confirmed, these phenomena are of outstanding interest because they offer new potential probes for the dynamics of the innermost regions of accretion flows, to tackle the formation of ejecta/jets and to place constraints on the rate of kinetic energy injected by AGNs into the ISM and IGM. Future high energy missions (such as the planned Simbol-X and IXO) will likely allow an exciting step forward in our understanding of the flow dynamics around black holes and the formation of the highest velocity outflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this PhD thesis is the study of the nuclear properties of radio loud AGN. Multiple and/or recent mergers in the host galaxy and/or the presence of cool core in galaxy clusters can play a role in the formation and evolution of the radio source. Being a unique class of objects (Lin & Mohr 2004), we focus on Brightest Cluster Galaxies (BCGs). We investigate their parsec scale radio emission with VLBI (Very Long Baseline Interferometer) observations. From literature or new data , we collect and analyse VLBA (Very Long Baseline) observations at 5 GHz of a complete sample of BCGs and ``normal'' radio galaxies (Bologna Complete Sample , BCS). Results on nuclear properties of BCGs are coming from the comparison with the results for the Bologna COmplete Sample (BCS). Our analysis finds a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Only one-sided BCGs have similar kinematic properties with FRIs. Furthermore, the dominance of two-sided jet structures only in cooling clusters suggests sub-relativistic jet velocities. The different jet properties can be related to a different jet origin or to the interaction with a different ISM. We larger discuss on possible explanation of this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holes. We present a multiwavelength study of a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed the X-ray spectral analysis based on the 7Ms Chandra dataset, which provides the best X-ray spectral information currently available for distant AGN. We were able to place constraints on the obscuring column densities and the intrinsic luminosities of our targets. Moreover, we built up the UV to FIR spectral energy distributions (SEDs) by combining the broad-band photometry from CANDELS and the Herschel catalogs, and analyzed them by means of an SED decomposition technique. Therefore, we derived important physical parameters of both the host galaxy and the AGN. In addition, we obtained, through an empirical calibration, the gas mass in the host galaxy and assessed the galaxy sizes in order to estimate the column density associated with the host ISM. The comparison of the ISM column densities with the values measured from the X-ray spectral analysis pointed out that the contribution of the host ISM to the obscuration of the AGN emission can be substantial, ranging from ~10% up to ~100% of the value derived from the X-ray spectra. The absorption may occur at different physical scales in these sources and, in particular, the medium in the host galaxy is an ingredient that should be taken into account, since it may have a relevant role in driving the early co-evolution of galaxies with their black holes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BreastScreen Queensland (BSQ) is a government-based health service that provides free breast cancer screening services to eligible women using digital mammography technology.' In 2007, BSQ launched its first social marketing campaign' aimed at achieving a 30 per cent increase in women's programme participation by addressing the barriers to regular screening and by dispelling myths about breast cancer (Tornabene 2010). 'The Facts' mass media social marketing campaign used a credible spokesperson, Australian journalist]ana Wendt, to deliver the call to action' Don't make excuses. Make an appointment'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The light distribution in the disks of many galaxies is ‘lopsided’ with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed.