41 resultados para gaits
Resumo:
Gait repertoires of the northern brown bandicoot, Isoodon macrourus, were studied over a wide range of locomotor speeds. At low relative speeds, bandicoots used symmetrical gaits that included pacing, trotting, and lateral sequence strides. Forefoot contact duration was generally shorter than hind foot contact duration at all speeds. At moderate relative speeds bandicoots used half-bounding gaits with either no period of suspension or with a short gathered suspension. At high speeds the predominant gait had both a short extended and a short gathered suspension, although some strides comprised only an extended suspension. Increases in speed were accompanied by increases in spinal extension, presumably leading to the extended suspensions. On a stationary treadmill individuals occasionally used a bipedal gait. Maximum half-bounding speeds appear to be relatively low in this species.
Resumo:
Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.
Resumo:
Vampire bats, Desmodus rotundus, must maximize their feeding cycle of one blood meal per day by being efficient in the stalking and acquisition of their food. Riskin and Hermanson documented the running gait of the common vampire bat and observed they were efficient at running speeds, using longer stride lengths and thus decreased stride frequency. We obtained preliminary data on gait maintained for up to 10 minutes on a moving treadmill belt at speeds ranging from 0.23 to 0.74 m/s, which spanned a range from walking to running gaits. Bats tended to transition between gaits at about 0.40 m/s. Fourteen bats were studied and included four that were able to walk or run for 10 minutes. There was no significant change in either stride duration or frequency associated with an increase in speed. We estimated O2 consumption and CO2 production both before and 5 minutes after exercise, and found that O2 consumption increased 1 minute and 5 minutes after exercise. CO2 levels increased significantly 1 minute after exercise, but tended back towards pre-exercise level 5 minutes after exercise. Two bats were tested for blood O2, CO2 and pH levels. Interestingly, pH levels fell from 7.3 to about 7.0, indicating lactate accumulation.
Resumo:
The interaction between the digital human model (DHM) and environment typically occurs in two distinct modes; one, when the DHM maintains contacts with the environment using its self weight, wherein associated reaction forces at the interface due to gravity are unidirectional; two, when the DHM applies both tension and compression on the environment through anchoring. For static balancing in first mode of interaction, it is sufficient to maintain the projection of the centre of mass (COM) inside the convex region induced by the weight supporting segments of the body on a horizontal plane. In DHM, static balancing is required while performing specified tasks such as reach, manipulation and locomotion; otherwise the simulations would not be realistic. This paper establishes the geometric relationships that must be satisfied for maintaining static balance while altering the support configurations for a given posture and altering the posture for a given support condition. For a given location of the COM for a system supported by multiple point contacts, the conditions for simultaneous withdrawal of a specified set of contacts have been determined in terms of the convex hulls of the subsets of the points of contact. When the projection of COM must move beyond the existing support for performing some task, new supports must be enabled for maintaining static balance. This support seeking behavior could also manifest while planning for reduction of support stresses. Feasibility of such a support depends upon the availability of necessary features in the environment. Geometric conditions necessary for selection of new support on horizontal,inclined and vertical surfaces within the workspace of the DHM for such dynamic scenario have been derived. The concepts developed are demonstrated using the cases of sit-to-stand posture transition for manipulation of COM within the convex supporting polygon, and statically stable walking gaits for support seeking within the kinematic capabilities of the DHM. The theory developed helps in making the DHM realize appropriate behaviors in diverse scenarios autonomously.
Resumo:
Ruptura do tendão calcâneo é uma das lesões tendíneas mais frequentes. Embora a maioria dos trabalhos sugira que o exercício seja benéfico na cicatrização tendínea, não há consenso sobre o efeito do antiinflamatório neste contexto. Trabalhos experimentais tentam reproduzir lesão aguda deste tendão, em diferentes espécies animais. Neste estudo, descrevemos uma técnica de tenotomia completa do tendão calcâneo direito em ratos e, em seguida, avaliamos os efeitos do uso do antiinflamatório e do exercício aeróbico, isoladamente e em combinação, sobre a proliferação celular e o perfil biomecânico do tendão calcâneo, durante o processo de cicatrização após tenotomia. Estudo experimental com 156 ratos machos adultos, da raça Wistar, com idade média de 3 meses e peso médio de 300g. Após anestesia com tiopental e com auxílio da microscopia de luz, foi realizada incisão longitudinal posterior de cinco milímetros, em direção proximal, a partir da tuberosidade posterior do calcâneo da pata direita do rato. Foi feito corte transversal do tendão calcâneo, a sete milímetros da tuberosidade do calcâneo, com preservação do tendão plantar. Utilizamos as técnicas de Hematoxilina e Eosina, Picrosirius-red e Resorcina-fucsina de Weigert para avaliação da cicatrização tendínea e das fibras dos sistemas colágeno e elástico. Após a tenotomia, metade dos animais receberam tenoxicam intramuscular por 7 dias e no 8o dia iniciou-se protocolo de exercício em esteira na metade de cada grupo. Os ratos foram divididos aleatoriamente em 4 grupos de tratamento: A sem antiinflamatório E sem exercício (controle); B com antiinflamatório E com exercício; C sem antiinflamatório E com exercício; D com antiinflamatório E sem exercício. Os animais foram eutanasiados com 1, 2, 4 e 8 semanas após a tenotomia, para avaliação histológica pelo PCNA, e biomecânica através do teste de resistência à tração e da medida do ciclo locomotor. Foram realizados análise de variância, teste de Kruskal-Wallis e o método de Bonferroni, no programa R Project, versão 2.11.1. O tempo cirúrgico médio foi de 1 minuto e 24 segundos, sem complicações observadas até a 8a semana pós-operatória. Observamos proliferação celular e fibrilogênese com duas semanas, e diminuição da celularidade e das fibras elásticas na 8a semana, além de mudanças na organização estrutural do sistema colágeno. Encontramos pico da imunomarcação com PCNA na 2a semana em todos os grupos, exceto no grupo A, cujo pico aconteceu com 1 semana da tenotomia. Evidenciamos resistência à tração significativamente maior (p=0,02) nos ratos submetidos ao exercício, 8 semanas após ruptura. Nos grupos com antiinflamatório, observamos um ciclo locomotor mais estável durante todo o tempo avaliado. Consideramos a técnica cirúrgica experimental de tenotomia completa do tendão calcâneo, realizada com auxílio da microscopia de luz e preservação do tendão plantar, simples, rápida, com sinais de cicatrização tendínea normal e de fácil reprodução em ratos. O exercício aeróbico, iniciado precocemente após tenotomia completa do tendão calcâneo, é significativamente benéfico na sua recuperação biomecânica e o uso combinado com antiinflamatório confere maior estabilidade na marcha, o que pode proteger contra rerruptura tendínea em ratos
Resumo:
Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.
Resumo:
In this paper a new kind of hopping robot has been designed which uses inverse pendulum dynamics to induce bipedal hopping gaits. Its mechanical structure consists of a rigid inverted T-shape mounted on four compliant feet. An upright "T" structure is connected to this by a rotary joint. The horizontal beam of the upright "T" is connected to the vertical beam by a second rotary joint. Using this two degree of freedom mechanical structure, with simple reactive control, the robot is able to perform hopping, walking and running gaits. During walking, it is experimentally shown that the robot can move in a straight line, reverse direction and control its turning radius. The results show that such a simple but versatile robot displays stable locomotion and can be viable for practical applications on uneven terrain.
Resumo:
针对欠平滑壁面上微小型爬壁机器人吸盘足吸附失败后的自主行为控制问题,根据机器人的结构设计及运动步态特点,提出基于主动试探的机器人吸盘足着地点自主选择步态控制方法。分析机器人的三种运动模式,以及直线运动和转向运动的基本步态。定义机器人的状态矢量,建立机器人吸盘足的有限状态机模型和状态转移图,并按"就近"原则设定状态转移函数的优先级。以上述研究为基础,提出在缺少壁面环境信息条件下的机器人步态控制主动试探方法。对步态控制方法进行仿真分析,并在实验室模拟环境和实际的飞机外表面环境进行试验验证,结果表明,所提出方法对于改善机器人的控制性能和提高机器人的自主能力是可行和有效的。
Resumo:
仿生技术与机器人技术的结合 ,使机器人从结构设计到运动模式的选择都有了新的进展 ,这大大扩大了机器人的应用领域 .本文阐述了仿蛇形机器人的应用背景和研究现状 ,并展望了其未来的发展
Resumo:
爬行运动为轮桨腿一体两栖机器人基本运动模式之一。以机器人爬行运动为研究对象,分析了两栖机器人爬行运动机理,并建立了其典型驱动单元的运动学模型;根据机器人不同爬行运动状态,提出了基于轮桨和足板不同步态形式的运动规划策略;采用虚拟样机技术,对不同爬行状态下的步态规划效果进行了仿真试验分析和验证。试验结果表明,在规划的步态下,轮桨腿一体两栖机器人具有良好的爬行稳定性、转向机动性和越障能力。
Resumo:
1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.
Resumo:
A neural pattern generator based upon a non-linear cooperative-competitive feedback neural network is presented. It can generate the two standard human gaits: the walk and the run. A scalar arousal or GO signal causes a bifurcation from one gait to the next. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform shapes. The fraction of cycle that activity is above threshold distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run.
Resumo:
A four-channel neural pattern generator is described in which both the frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal. The generator is used to simulate quadruped gaits; in particular, rapid transitions are simulated in the order - walk, trot, pace, and gallop - that occurs in the cat. Precise switching control is achieved by using an arousal dependent modulation of the model's inhibitory interactions. This modulation generates a different functional connectivity in a single network at different arousal levels.
Resumo:
This article describes a. neural pattern generator based on a cooperative-competitive feedback neural network. The two-channel version of the generator supports both in-phase and anti-phase oscillations. A scalar arousal level controls both the oscillation phase and frequency. As arousal increases, oscillation frequency increases and bifurcations from in-phase to anti-phase, or anti-phase to in-phase oscillations can occur. Coupled versions of the model exhibit oscillatory patterns which correspond to the gaits used in locomotion and other oscillatory movements by various animals.
Resumo:
Interleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.