994 resultados para gait recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have been carried out to recognize individuals from a frontal view using their gait patterns. In previous work, gait sequences were captured using either single or stereo RGB camera systems or the Kinect 1.0 camera system. In this research, we used a new frontal view gait recognition method using a laser based Time of Flight (ToF) camera. In addition to the new gait data set, other contributions include enhancement of the silhouette segmentation, gait cycle estimation and gait image representations. We propose four new gait image representations namely Gait Depth Energy Image (GDE), Partial GDE (PGDE), Discrete Cosine Transform GDE (DGDE) and Partial DGDE (PDGDE). The experimental results show that all the proposed gait image representations produce better accuracy than the previous methods. In addition, we have also developed Fusion GDEs (FGDEs) which achieve better overall accuracy and outperform the previous methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Previous assessment methods for PG recognition used sensor mechanisms for PG that may cause discomfort. In order to avoid stress of applying wearable sensors, computer vision (CV) based diagnostic systems for PG recognition have been proposed. Main constraints in these methods are the laboratory setup procedures: Novel colored dresses for the patients were specifically designed to segment the test body from a specific colored background. Objective: To develop an image processing tool for home-assessment of Parkinson Gait(PG) by analyzing motion cues extracted during the gait cycles. Methods: The system is based on the idea that a normal body attains equilibrium during the gait by aligning the body posture with the axis of gravity. Due to the rigidity in muscular tone, persons with PD fail to align their bodies with the axis of gravity. The leaned posture of PD patients appears to fall forward. Whereas a normal posture exhibits a constant erect posture throughout the gait. Patients with PD walk with shortened stride angle (less than 15 degrees on average) with high variability in the stride frequency. Whereas a normal gait exhibits a constant stride frequency with an average stride angle of 45 degrees. In order to analyze PG, levodopa-responsive patients and normal controls were videotaped with several gait cycles. First, the test body is segmented in each frame of the gait video based on the pixel contrast from the background to form a silhouette. Next, the center of gravity of this silhouette is calculated. This silhouette is further skeletonized from the video frames to extract the motion cues. Two motion cues were stride frequency based on the cyclic leg motion and the lean frequency based on the angle between the leaned torso tangent and the axis of gravity. The differences in the peaks in stride and lean frequencies between PG and normal gait are calculated using Cosine Similarity measurements. Results: High cosine dissimilarity was observed in the stride and lean frequencies between PG and normal gait. High variations are found in the stride intervals of PG whereas constant stride intervals are found in the normal gait. Conclusions: We propose an algorithm as a source to eliminate laboratory constraints and discomfort during PG analysis. Installing this tool in a home computer with a webcam allows assessment of gait in the home environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with Parkinson's disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with several gait-cycles. The subject's body was segmented using a color-segmentation method to form a silhouette. The silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in home-environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel bolt-on module capable of boosting the robustness of various single compact 2D gait representations. Gait recognition is negatively influenced by covariate factors including clothing and time which alter the natural gait appearance and motion. Contrary to traditional gait recognition, our bolt-on module remedies this by a dedicated covariate factor detection and removal procedure which we quantitatively and qualitatively evaluate. The fundamental concept of the bolt-on module is founded on exploiting the pixel-wise composition of covariate factors. Results demonstrate how our bolt-on module is a powerful component leading to significant improvements across gait representations and datasets yielding state-of-the-art results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis se centra en la identificación de personas a través de la forma de caminar. El problema del reconocimiento del paso ha sido tratado mediante diferentes enfoques, en los dominios 2D y 3D, y usando una o varias vistas. Sin embargo, la dependencia con respecto al punto de vista, y por tanto de la trayectoria del sujeto al caminar sigue siendo aún un problema abierto. Se propone hacer frente al problema de la dependencia con respecto a la trayectoria por medio de reconstrucciones 3D de sujetos caminando. El uso de reconstrucciones varias ventajas que cabe destacar. En primer lugar, permite explotar una mayor cantidad de información en contraste con los métodos que extraen los descriptores de la marcha a partir de imágenes, en el dominio 2D. En segundo lugar, las reconstrucciones 3D pueden ser alineadas a lo largo de la marcha como si el sujeto hubiera caminado en una cinta andadora, proporcionando así una forma de analizar el paso independientemente de la trayectoria seguida. Este trabajo propone tres enfoques para resolver el problema de la dependencia a la vista: 1. Mediante la utilización de reconstrucciones volumétricas alineadas. 2. Mediante el uso de reconstrucciones volumétricas no alineadas. 3. Sin usar reconstrucciones. Se proponen además tres tipos de descriptores. El primero se centra en describir el paso mediante análisis morfológico de los volúmenes 3D alineados. El segundo hace uso del concepto de entropa de la información para describir la dinámica del paso humano. El tercero persigue capturar la dinámica de una forma invariante a rotación, lo cual lo hace especialmente interesante para ser aplicado tanto en trayectorias curvas como rectas, incluyendo cambios de dirección. Estos enfoques han sido probados sobre dos bases de datos públicas. Ambas están especialmente diseñadas para tratar el problema de la dependencia con respecto al punto de vista, y por tanto de la dependencia con respecto a la trayectoria. Los resultados experimentales muestran que para el enfoque basado en reconstrucciones volumétricas alineadas, el descriptor del paso basado en entropa consigue los mejores resultados, en comparación con métodos estrechamente relacionados del Estado del Arte actual. No obstante, el descriptor invariante a rotación consigue una tasa de reconocimiento que supera a los métodos actuales sin requerir la etapa previa de alineamiento de las reconstrucciones 3D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a representation of the dynamics of human walking action for the purpose of person identification and classification by gait appearance. Our gait representation is based on simple features such as moments extracted from video silhouettes of human walking motion. We claim that our gait dynamics representation is rich enough for the task of recognition and classification. The use of our feature representation is demonstrated in the task of person recognition from video sequences of orthogonal views of people walking. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times, and under varying lighting environments. In addition, preliminary results are shown on gender classification using our gait dynamics features.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gait period estimation is an important step in the gait recognition framework. In this paper, we propose a new gait cycle detection method based on the angles of extreme points of both legs. In addition to that, to further improve the estimation of the gait period, the proposed algorithm divides the gait sequence into sections before identifying the maximum values. The proposed algorithm is scale invariant and less dependent on the silhouette shape. The performance of the proposed method was evaluated using the OU-ISIR speed variation gait database. The experimental results show that the proposed method achieved 90.2% gait recognition accuracy and outperforms previous methods found in the literature with the second best only achieved 67.65% accuracy.