954 resultados para fuzzy-basis membership functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous papers from the authors fuzzy model identification methods were discussed. The bacterial algorithm for extracting fuzzy rule base from a training set was presented. The Levenberg-Marquardt algorithm was also proposed for determining membership functions in fuzzy systems. In this paper the Levenberg-Marquardt technique is improved to optimise the membership functions in the fuzzy rules without Ruspini-partition. The class of membership functions investigated is the trapezoidal one as it is general enough and widely used. The method can be easily extended to arbitrary piecewise linear functions as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two issues relating to modeling of a monotonicity-preserving Fuzzy Inference System (FIS) are examined. The first is on designing or tuning of Gaussian Membership Functions (MFs) for a monotonic FIS. Designing Gaussian MFs for an FIS is difficult because of its spreading and curvature characteristics. In this study, the sufficient conditions are exploited, and the procedure of designing Gaussian MFs is formulated as a constrained optimization problem. The second issue is on the testing procedure for a monotonic FIS. As such, a testing procedure for a monotonic FIS model is proposed. Applicability of the proposed approach is demonstrated with a real world industrial application, i.e., Failure Mode and Effect Analysis. The results obtained are analysis and discussed. The outcomes show that the proposed approach is useful in designing a monotonicity-preserving FIS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmentation is the process of extraction of objects from an image. This paper proposes a new algorithm to construct intuitionistic fuzzy set (IFS) from multiple fuzzy sets as an application to image segmentation. Hesitation degree in IFS is formulated as the degree of ignorance (due to the lack of knowledge) to determine whether the chosen membership function is best for image segmentation. By minimizing entropy of IFS generated from various fuzzy sets, an image is thresholded. Experimental results are provided to show the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand- avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand-avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authors analyses questions of the subjective uncertainty and inexactness situations in the moment of using expert information and another questions which are connected with expert information uncertainty by fuzzy sets with rough membership functions in this article. You can find information about integral problems of individual expert marks and about connection among total marks “degree of inexactness” with sensibility of measurement scale. A lot of different situation which are connected with distribution of the function accessory significance and orientation of the concrete take to task decision making are analyses here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a recursive rule base adjustment to enhance the performance of fuzzy logic controllers. Here the fuzzy controller is constructed on the basis of a decision table (DT), relying on membership functions and fuzzy rules that incorporate heuristic knowledge and operator experience. If the controller performance is not satisfactory, it has previously been suggested that the rule base be altered by combined tuning of membership functions and controller scaling factors. The alternative approach proposed here entails alteration of the fuzzy rule base. The recursive rule base adjustment algorithm proposed in this paper has the benefit that it is computationally more efficient for the generation of a DT, and advantage for online realization. Simulation results are presented to support this thesis. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for automatic exploration of the genetic search region through fuzzy coding (Sharma and Irwin, 2003) has been proposed. Fuzzy coding (FC) provides the value of a variable on the basis of the optimum number of selected fuzzy sets and their effectiveness in terms of degree-of-membership. It is an indirect encoding method and has been shown to perform better than other conventional binary, Gray and floating-point encoding methods. However, the static range of the membership functions is a major problem in fuzzy coding, resulting in longer times to arrive at an optimum solution in large or complicated search spaces. This paper proposes a new algorithm, called fuzzy coding with a dynamic range (FCDR), which dynamically allocates the range of the variables to evolve an effective search region, thereby achieving faster convergence. Results are presented for two benchmark optimisation problems, and also for a case study involving neural identification of a highly non-linear pH neutralisation process from experimental data. It is shown that dynamic exploration of the genetic search region is effective for parameter optimisation in problems where the search space is complicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.