774 resultados para fuzzy topology.
Resumo:
It is believed that every fuzzy generalization should be formulated in such a way that it contain the ordinary set theoretic notion as a special case. Therefore the definition of fuzzy topology in the line of C.L.CHANG E9] with an arbitrary complete and distributive lattice as the membership set is taken. Almost all the results proved and presented in this thesis can, in a sense, be called generalizations of corresponding results in ordinary set theory and set topology. However the tools and the methods have to be in many of the cases, new. Here an attempt is made to solve the problem of complementation in the lattice of fuzzy topologies on a set. It is proved that in general, the lattice of fuzzy topologies is not complemented. Complements of some fuzzy topologies are found out. It is observed that (L,X) is not uniquely complemented. However, a complete analysis of the problem of complementation in the lattice of fuzzy topologies is yet to be found out
Resumo:
This thesis is a study of abstract fuzzy convexity spaces and fuzzy topology fuzzy convexity spaces No attempt seems to have been made to develop a fuzzy convexity theoryin abstract situations. The purpose of this thesis is to introduce fuzzy convexity theory in abstract situations
Resumo:
In this study we combine the notions of fuzzy order and fuzzy topology of Chang and define fuzzy ordered fuzzy topological space. Its various properties are analysed. Product, quotient, union and intersection of fuzzy orders are introduced. Besides, fuzzy order preserving maps and various fuzzy completeness are investigated. Finally an attempt is made to study the notion of generalized fuzzy ordered fuzzy topological space by considering fuzzy order defined on a fuzzy subset.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.
Resumo:
The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.
Resumo:
The study on the fuzzy absolutes and related topics. The different kinds of extensions especially compactification formed a major area of study in topology. Perfect continuous mappings always preserve certain topological properties. The concept of Fuzzy sets introduced by the American Cyberneticist L. A Zadeh started a revolution in every branch of knowledge and in particular in every branch of mathematics. Fuzziness is a kind of uncertainty and uncertainty of a symbol lies in the lack of well-defined boundaries of the set of objects to which this symbol belongs. Introduce an s-continuous mapping from a topological space to a fuzzy topological space and prove that the image of an H-closed space under an s-continuous mapping is f-H closed. Here also proved that the arbitrary product fi and sum of fi of the s-continuous maps fi are also s-continuous. The original motivation behind the study of absolutes was the problem of characterizing the projective objects in the category of compact spaces and continuous functions.
Resumo:
The topology as the product set with a base chosen as all products of open sets in the individual spaces. This topology is known as box topology. The main objective of this study is to extend the concept of box products to fuzzy box products and to obtain some results regarding them. Owing to the fact that box products have plenty of applications in uniform and covering properties, here made an attempt to explore some inter relations of fuzzy uniform properties and fuzzy covering properties in fuzzy box products. Even though the main focus is on fuzzy box products, some brief sketches regarding hereditarily fuzzy normal spaces and fuzzy nabla product is also provided. The main results obtained include characterization of fuzzy Hausdroffness and fuzzy regularity of box products of fuzzy topological spaces. The investigation of the completeness of fuzzy uniformities in fuzzy box products proved that a fuzzy box product of spaces is fuzzy topologically complete if each co-ordinate space is fuzzy topologically complete. The thesis also prove that the fuzzy box product of a family of fuzzy α-paracompact spaces is fuzzy topologically complete. In Fuzzy box product of hereditarily fuzzy normal spaces, the main result obtained is that if a fuzzy box product of spaces is hereditarily fuzzy normal ,then every countable subset of it is fuzzy closed. It also deals with the notion of fuzzy nabla product of spaces which is a quotient of fuzzy box product. Here the study deals the relation connecting fuzzy box product and fuzzy nabla product
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
Resumo:
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.