995 resultados para fungus production


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary: An uncommon thermophilic fungus, Melanocarpus albomyces, was isolated from soil and compost by incubating samples in a glucose/sorbose/asparagine liquid medium, followed by enrichment culture in medium containing sugarcane bagasse as carbon source. The culture filtrate protein of the fungus grown in the presence of bagasse or xylose hydrolysed xylan and some other polysaccharides but cellulose was not hydrolysed. High extracellular xylanase (EC 3.2.1.8) activity was produced by cultures grown on xylose or hemicellulosic materials. The enzyme was induced in glucose-grown washed mycelia in response to addition of xylose or xylan but not by alkyl or aryl β-D-xylosides. Cultures produced higher enzyme yields in shaken flasks than in a fermenter. Gel-filtration chromatography of culture filtrate protein showed the presence of two isoenzymes of xylanase, whose relative proportions varied with the carbon source used for growth. The extent of hydrolysis of heteroxylans or the hemicellulosic fraction of bagasse by culture filtrate protein preparations was greater when the cultures had been grown on bagasse rather than xylose as the inducing substrate. The activity of xylanase preparations was increased when an exogenous β-glucosidase was added.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis entitled “Alkaline Protease Production by Marine Fungus Engyodontium BTMFS 10”.Proteases are the single class of enzymes, which occupy a pivotal position with respect to their application in both physiological and commercial filed. Protease in the industrial market is expected to increase further in the coming year. The current trend is to use microbial enzymes since they provide a greater diversity of catalytic activities and can be produced more economically. Main objective of theses studies are the optimization of various physicochemical factors in the solid state fermentation for the production of alkaline protease enzyme, characterization of the enzyme, evaluation of the enzyme for various industrial application. The result obtained the during the course of theses study indicate the scope for the utilization of this study Marine Fungus E. Album for extra cellular protease production employing solid state fermentation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine fungi remain totally unexplored as a source of industrial enzyme and prospective applications. Further tannase production by a marine organism has so far not been established. The primary objective of this study included the evaluation of the potential of Aspergillus awamori isolated from sea water as part of an earlier study and available in the culture collection of the Microbial technology laboratory for tannase production through different fermentation methods, optimization of bioprocess variables by statistical methods, purification and characterization of the enzyme, genetic study, and assessment of its potential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study indicate the scope for the utilization of the marine fungus Aspergillus awamori Nagazawa BTMFW 032 for extracellular lipase production employing submerged fermentation. To the best of our knowledge this is the first report on lipase production by a marine fungus employing statistical modeling towards industrial production. The characterization of purified lipase produced by A. awamori showed stability in organic solvents, oxidizing agent and reducing agents, I,3-regiospecificity and hydrolytic activity. These properties make this lipase an ideal candidate for biocatalysis in organic media for the production of novel compounds such as biodiesel and sugar fatty esters. 91.4 % reduction in oil and grease content in ayurvedic oil by the treatment of A. awamori lipase indicates that there is a scope for this enzyme in the treatment of oil effluents and bioremediation. There is ample scope for further research on the biochemistry of the enzyme, structure elucidation and enzyme engineering towards a wide range of further applications, besides enriching scientific knowledge on marine enzymes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prawn waste, a chitinous solid waste of the shell®sh processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. The process parameters in¯uencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl, 2.5% (w/w) KH2PO4, 425±600 lm substrate particle size at 27 °C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shell®sh processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of glucose concentration and other carbohydrates (monosaccharides: fructose, galactose, mannose; polyols: mannitol and sorbitol; disaccharides: lactose, sucrose and commercial sucrose; and industrial sugarcane molasses) were compared as sole carbon sources for the production of Botryosphaeran, an exopolysaccharide (EPS) produced by Botryosphaeria sp. The optimum glucose concentration for EPS production was 50 g 1(-1). With the exception of mannitol, the fungus produced EPS on all carbon sources studied, with highest yields occurring with sucrose followed by glucose. All EPS showed exclusively glucose after acid hydrolysis and monosaccharide analysis. FTIR spectroscopy demonstrated the presence of beta-anomers indicating that all the EPS produced by Botryosphaeria sp. on the different carbon sources were essentially of the beta-D-glucan type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)