965 resultados para fungus garden


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaf-cutting ants forage a wide variety of plant species, used for symbiotic fungus cultivation. To better understand this tripartite complex interaction, 24 colonies of Acromyrmex subterraneus brunneus were conditioned for 4 months to 6 different plants (Citrus spp., Ligustrum spp., Acalypha spp., Eucalyptus spp., Alchornea triplinervia, Melia spp.), to verify the influence of conditioning on foraging behavior of workers. The effect of plants on symbiotic fungus development was studied separately, through macerated plants in Agar and culture medium A as the control. During foraging, workers presented polyphagic foraging behavior, refusing the plants to which they were conditioned. The selection of plants is not correlated with the plant substrate that promotes good development of symbiotic fungus. Such results demonstrate the importance of plant diversity for fungus garden maintenance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this paper is to investigate the influence of physical and chemical factors on transport and use of substrate for Atta sexdens rubropilosa workers. Three types of rectangular fragments were used to study the physical influence factors: filter paper with paraffin, filter paper without paraffin and polyester film. To study the chemical factors, some fragments were impregnated with organic extract of orange albedo, others were soaked with soybean oil and for the remaining ones nothing was applied. The following parameters were evaluated: (i) attractiveness of substrate for transport and number of loading workers per treatment; (ii) foraged material incorporation; (iii) rejection by numbers of fragments deposited in the garbage or beside the fungus garden. All the polyester film fragments carried out to the fungus garden were subsequently rejected. We verified that chemical factors of the substrate were more quickly detected by the workers, whereas physical factors were used as a criterion in the decision-making to reject or accept the substrate collected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The behavioral repertory of Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) workers marked by size category was studied during the preparation of the leaf substrate in the laboratory. The workers were marked according to three physical castes, i.e., minima, generalist and forager. Seven types of behavioral acts were recorded for each caste, with the following frequencies: licking leaf fragments (64.6%), holding fragments on the surface of the fungus garden (16.4%), shredding the fragments (6.0%), chewing and crimping the edges of the fragments (9.0%), incorporating the fragments (2.7%), touching the surface of the fungus with their mandibles and other mouthparts after incorporation (0.3%), and depositing fecal fluid (0.1%). The minima workers were found to be more specialized in the activities related to the preparation of the leaf substrate, which represented 52% of the total number of tasks performed. The generalists performed 40.3% of these tasks, and the foragers 7.9%. Licking the substrate was the behavior most frequently recorded and performed for a longer period of time. In this way, the workers may feed and at the same time eliminate microorganisms that are harmful to the symbiont fungus. The smaller castes, minima and generalists, are those most responsible for the preparation of the leaf substrate and predominate within a colony. From a practical viewpoint, with the introduction of toxic bait containing insecticides, for example, these size categories will be those most intensely intoxicated, especially through the behavior of licking bait pellets. On the basis of the data obtained about these behaviors, we may raise the hypothesis that trophallaxis in not the major factor triggering contamination with an insecticide among the workers of a colony.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leaf-cutting ants modify the properties of the soil adjacent to their nests. Here, we examined whether such an ant-altered environment impacts the belowground fungal communities. Fungal diversity and community structure of soil from the fungus garden chambers of Atta sexdens rubropilosa and Atta bisphaerica, two widespread leaf-cutting ants in Brazil, were determined and compared with non-nest soils. Culture-dependent methods revealed similar species richness but different community compositions between both types of soils. Penicillium janthinellum and Trichoderma spirale were the prevalent isolates in fungus chamber soils and non-nest soils, respectively. In contrast to cultivation methods, analyses of clone libraries based on the internal transcribed spacer (ITS) region indicated that richness of operational taxonomic units significantly differed between soils of the fungus chamber and non-nest soils. FastUnifrac analyses based on ITS sequences further revealed a clear distinction in the community structure between both types of soils. Plectania milleri and an uncultured Clavariaceae fungus were prevalent in fungus chamber soils and non-nest soils, respectively. FastUnifrac analyses also revealed that fungal community structures of soil from the garden chambers markedly differed among ant species. Our findings suggest that leaf-cutting ants affect fungal communities in the soil from the fungus chamber in comparison to non-nest soils. © 2013 WILEY-VCH Verlag GmbH & Co.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe the first observation of parabiosis between two Attini ants (Apterostigma urichii Forel and Cyphomyrmex faunulus Wheeler) found in northern Manaus, AM, Brazil. Complete, mature colonies of both species were found in a single cavity inside a rotten log, sharing and tending a single combined fungus garden, made up of two distinct halves, each cultivated by one species. Workers of one species often antennated workers of the other species and showed no aggression toward each other or toward each other`s workers, queens, or immatures. Laboratory observations suggest that immatures of both species feed on hyphae from either half of the fungus garden. We were not able to find other parabiotic pairs involving the same species in the same locality, although we found colonies of both species sharing trails and foraging territories.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.