981 resultados para functional trait


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Valuable insights into mechanisms of community responses to environmental change can be gained by analysing in tandem the variation in functional and taxonomic composition along environmental gradients. We assess the changes in species and functional trait composition (i.e. dominant traits and functional diversity) of diverse bee communities in contrasting fire-driven systems in two climatic regions: Mediterranean (scrub habitats in Israel) and temperate (chestnut forests in southern Switzerland). In both climatic regions, there were shifts in species diversity and composition related to post-fire age. In the temperate region, functional composition responded markedly to fire; however, in the Mediterranean, the taxonomic response to fire was not matched by functional replacement. These results suggest that greater functional stability to fire in the Mediterranean is achieved by replacement of functionally similar species (i.e. functional redundancy) which dominate under different environmental conditions in the heterogeneous landscapes of the region. In contrast, the greater functional response in the temperate region was attributed to a more rapid post-fire vegetation recovery and shorter time-window when favourable habitat was available relative to the Mediterranean. Bee traits can be used to predict the functional responses of bee communities to environmental changes in habitats of conservation importance in different regions with distinct disturbance regimes. However, predictions cannot be generalized from one climatic region to another where distinct habitat configurations occur.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Information on the functional traits was gathered for the most commonly-sampled copepod species of the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length (mm), trophic group (Omnivore/Carnivore/Herbivore/Detritivore), feeding type (Cruise-feeding/Filter-feeding/Ambush-feeding), spawning strategy (Sac-spawner/Free-spawner), diel vertical migration (Non-migrant/Weak-migrant/Strong-migrant) and vertical habitat (prefered depth layer). Using cluster analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above-ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits in order to achieve systematically maximal co-benefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-making rules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models in order to find restoration solutions that maximize simultaneously biodiversity, carbon stocks and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration and other socio-economic co-benefits under global change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire visait à déterminer si un petit parc périurbain, en l’occurrence le Parc national du Mont-Saint-Bruno, est parvenu à maintenir l’intégrité de sa flore au cours des trente dernières années en dépit de pressions humaines croissantes et de perturbations naturelles passées, en plus d’identifier les principaux changements floristiques survenus au cours de cette période et les facteurs responsables. Pour répondre à ces objectifs, une étude historique a été réalisée, en comparant un inventaire floristique ancien (1977) à un inventaire récent (2013). Mes résultats montrent d’abord une forte croissance de la diversité alpha indigène au cours des 35 dernières années, accompagnée d’un déclin significatif de la diversité bêta (30%). Malgré cette homogénéisation taxonomique, la diversité fonctionnelle de la flore forestière s’est accrue, la rendant probablement plus résiliente aux événements perturbateurs. D’autre part, mes analyses ont révélé la progression de traits fonctionnels souvent associés à des habitats forestiers intensément broutés, révélant une certaine influence du cerf de Virginie sur la composition et la structure de la flore forestière. Enfin, mes résultats ont montré que les herbiers botaniques se révèlent être une alternative fiable aux méthodes traditionnelles pour documenter et évaluer l’impact des grands herbivores sur la morphologie des plantes broutées. Au final, cette étude a montré que les petites aires protégées périurbaines peuvent jouer un rôle majeur dans la préservation de la diversité floristique d’habitats forestiers d’intérêt, particulièrement lorsque leur statut de protection permet d’encadrer de manière stricte les activités humaines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species-rich lowland hay meadows are of conservation importance for both plants and invertebrates; however, they have declined in area across Europe as a result of conversion to other land uses and management intensification. The re-creation of these grasslands on ex-arable land provides a valuable approach to increasing the extent and conservation value of this threatened habitat. Over a 3-year period a replicated block design was used to test whether introducing seeds promoted the re-creation of both plant and phytophagous beetle assemblages typical of a target hay meadow. Seeds were harvested from local hay meadows, and applied to experimental plots in the form of either green hay or brush harvesting seeds. Green hay spreading achieved the greatest success in re-creating plant and phytophagous beetle assemblages. While re-creation success increased over time for both taxa, for the phytophagous beetles the greatest increase in re-creation success relative to the establishment year also occurred where green hay was applied. We also considered the phytophagous beetles in terms of functional traits that describe host plant specificity, larval feeding location and dispersal. Phytophagous beetle functional trait composition was most similar to the target hay meadow assemblage where some form of seed addition was used, i.e. hay spreading or brush harvested seeds. This study identified the importance of introducing target plant species as a mechanism to promote the re-creation of phytophagous beetle communities. Seed addition methods (e.g. green hay spreading) are crucial to successful hay meadow re-creation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Restoration efforts in the Mediterranean Basin have been changing from a silvicultural to an ecological restoration approach. Yet, to what extent the projects are guided by ecological restoration principles remains largely unknown. To analyse this issue, we built an on-line survey addressed to restoration practitioners. We analysed 36 restoration projects, mostly from drylands (86%). The projects used mainly soil from local sources. The need to comply with legislation was more important as a restoration motive for European Union (EU) than for non-EU countries, while public opinion and health had a greater importance in the latter. Non-EU countries relied more on non-native plant species than EU countries, thus deviating from ecological restoration guidelines. Nursery-grown plants used were mostly of local or regional provenance, whilst seeds were mostly of national provenance. Unexpected restoration results (e.g. inadequate biodiversity) were reported for 50% of the projects and restoration success was never evaluated in 22%. Long term evaluation (> 6 years) was only performed in 31% of cases, and based primarily on plant diversity and cover. The use of non-native species and species of exogenous provenances may: i) entail the loss of local genetic and functional trait diversity, critical to cope with drought, particularly under the predicted climate change scenarios, and ii) lead to unexpected competition with native species and/or negatively impact local biotic interactions. Absent or inappropriate monitoring may prevent the understanding of restoration trajectories, precluding adaptive management strategies, often crucial to create functional ecosystems able to provide ecosystem services. The overview of ecological restoration projects in the Mediterranean Basin revealed high variability among practices and highlighted the need for improved scientific assistance and information exchange, greater use of native species of local provenance, and more long-term monitoring and evaluation, including functional and ecosystem services' indicators, to improve and spread the practice of ecological restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction—spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p ≤ 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction— spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p < 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.