994 resultados para functional speech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this prospective randomized clinical trial was to compare 2 cohorts of standardized cleft patients with regard to functional speech outcome and the presence or absence of palatal fistulae. The 2 cohorts are randomized to undergo either a conventional von Langenbeck repair with intravelar velarplasty or the double-opposing Z-plasty Furlow procedure. A prospective 2 x 2 x 2 factorial clinical trial was used in which each subject was randomly assigned to 1 of 8 different groups: 1 of 2 different lip repairs (Spina vs. Millard), 1 of 2 different palatal repair (von Langenbeck vs. Furlow), and 1 of 2 different ages at time of palatal surgery (9-12 months vs. 15-18 months). All surgeries were performed by the same 4 surgeons. A cul-de-sac test of hypernasality and a mirror test of nasal air emission were selected as primary outcome measures for velopharyngeal function. Both a surgeon and speech pathologist examined patients for the presence of palatal fistulae. In this study, the Furlow double-opposing Z-palatoplasty resulted in significantly better velopharyngeal function for speech than the von Langenbeck procedure as determined by the perceptual cul-de-sac test of hypernasality. Fistula occurrence was significantly higher for the Furlow procedure than for the von Langenbeck. Fistulas were more likely to occur in patients with wider clefts and when relaxing incisions were not used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This training package is provided as a guide and resource to promote awareness and understanding of people who have complex communication needs and give people who work in law and justice system strategies to facilitate successful communication interactions. Complex communication needs are defined as communication problems associated with a wide range of physical, sensory and environmental causes which restrict/limit an individual's ability to participate independently in society. They and their communication partners may benefit from using Alternative and Augmentative Communication (AAC) methods. Alternative and Augmentative Communication (AAC) is an approach or communication system that makes it possible for a person without speech to communicate. AAC includes gestures and sign language, picture and alphabet boards and high technology electronic communication devices that produce computerised speech. Many people with complex communication needs use a combination of AAC communication to express themselves. It is hoped that this package will facilitate access to the justice system for a group of people who may experience social disadvantage as a result of their complex communication needs. The information included in the package is not exhaustive. It is designed to : provide the trainer and staff with a general understanding of complex communication needs; challenge misconceptions about people who have little or no functional speech; provide practical strategies and guidelines to assist staff to more successfully communicate with people with complex communication needs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successful communication is integral to quality health care and successful nursing practice. Ten people who had been in hospital in the 12 months prior to the study and who had no functional speech at that time were interviewed about their communication experiences with nurses. Overall, these individuals experienced difficulties, some of which appeared to be related to a lack of augmentative and alternative communication (AAC) resources and a lack of knowledge of AAC among nurses. In addition, the participants noted that nurses did not always have the time or the skills to communicate effectively with them. The participants suggested strategies to improve communication interactions between patients with no or limited functional speech and nurses. These strategies include pre-admission briefing and training nurses about effective strategies for communicating with patients who are unable to speak, including the use of augmentative and alternative communication systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary objective: The aims of this preliminary study were to explore the suitability for and benefits of commencing dysarthria treatment for people with traumatic brain injury (TBI) while in post-traumatic amnesia ( PTA). It was hypothesized that behaviours in PTA don't preclude participation and dysarthria characteristics would improve post-treatment. Research design: A series of comprehensive case analyses. Methods and procedures: Two participants with severe TBI received dysarthria treatment focused on motor speech deficits until emergence from PTA. A checklist of neurobehavioural sequelae of TBI was rated during therapy and perceptual and motor speech assessments were administered before and after therapy. Main outcomes and results: Results revealed that certain behaviours affected the quality of therapy but didn't preclude the provision of therapy. Treatment resulted in physiological improvements in some speech sub-systems for both participants, with varying functional speech outcomes. Conclusions: These findings suggest that dysarthria treatment can begin and provide short-term benefits to speech production during the late stages of PTA post-TBI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alterations of existing neural networks during healthy aging, resulting in behavioral deficits and changes in brain activity, have been described for cognitive, motor, and sensory functions. To investigate age-related changes in the neural circuitry underlying overt non-lexical speech production, functional MRI was performed in 14 healthy younger (21–32 years) and 14 healthy older individuals (62–84 years). The experimental task involved the acoustically cued overt production of the vowel /a/ and the polysyllabic utterance /pataka/. In younger and older individuals, overt speech production was associated with the activation of a widespread articulo-phonological network, including the primary motor cortex, the supplementary motor area, the cingulate motor areas, and the posterior superior temporal cortex, similar in the /a/ and /pataka/ condition. An analysis of variance with the factors age and condition revealed a significant main effect of age. Irrespective of the experimental condition, significantly greater activation was found in the bilateral posterior superior temporal cortex, the posterior temporal plane, and the transverse temporal gyri in younger compared to older individuals. Significantly greater activation was found in the bilateral middle temporal gyri, medial frontal gyri, middle frontal gyri, and inferior frontal gyri in older vs. younger individuals. The analysis of variance did not reveal a significant main effect of condition and no significant interaction of age and condition. These results suggest a complex reorganization of neural networks dedicated to the production of speech during healthy aging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the neural network of overt speech production, eventrelated fMRI was performed in 9 young healthy adult volunteers. A clustered image acquisition technique was chosen to minimize speechrelated movement artifacts. Functional images were acquired during the production of oral movements and of speech of increasing complexity (isolated vowel as well as monosyllabic and trisyllabic utterances). This imaging technique and behavioral task enabled depiction of the articulo-phonologic network of speech production from the supplementary motor area at the cranial end to the red nucleus at the caudal end. Speaking a single vowel and performing simple oral movements involved very similar activation of the corticaland subcortical motor systems. More complex, polysyllabic utterances were associated with additional activation in the bilateral cerebellum,reflecting increased demand on speech motor control, and additional activation in the bilateral temporal cortex, reflecting the stronger involvement of phonologic processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers performed six different tasks of inner and heard speech according to a randomized crossover design. During the tasks, we generally found a decrease in PaCO2 (only for inner speech), tissue oxygen saturation (StO2), oxyhemoglobin ([O2Hb]), total hemoglobin ([tHb]) concentration and an increase in deoxyhemoglobin concentration ([HHb]). Furthermore, we found significant relations between changes in [O2Hb], [HHb], [tHb], or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. We conclude that changes in breathing during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech, no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], and [tHb] suggest that changes in PaCO2 were also involved here. Different verse types (hexameter and alliteration) led to different changes in [tHb], implying different brain activations. In conclusion, StO2, [O2Hb], [HHb], and [tHb] are affected by interplay of both PaCO2 reactivity and functional brain activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)), as well as changes in end-tidal CO2 (PETCO2), a reliable and accurate estimate of PaCO2. Each subject performed three different tasks (inner recitation of hexameter (IRH) or prose (IRP) verses) and a control task (mental arithmetic (MA)) on different days according to a randomized crossover design. Statistical analysis was applied to the differences between pre-baseline, two tasks, and four post-baseline periods. The two brain hemispheres and three tasks were tested separately. During the tasks, we found (i) PETCO2 decreased significantly (p < 0.05) during the IRH ( ~ 3 mmHg) and MA ( ~ 0.5 mmHg) task. (ii) [O2Hb] and StO2 decreased significantly during IRH ( ~ 1.5 μM; ~ 2 %), IRP ( ~ 1 μM; ~ 1.5 %), and MA ( ~ 1 μM; ~ 1.5 %) tasks. During the post-baseline period, [O2Hb] and [tHb] of the left PFC decreased significantly after the IRP and MA task ( ~ 1 μM and ~ 2 μM, respectively). In conclusion, the study showed that inner speech affects PaCO2, probably due to changes in respiration. Although a decrease in PaCO2 is causing cerebral vasoconstriction and could potentially explain the decreases of [O2Hb] and StO2 during inner speech, the changes in PaCO2 were significantly different between the three tasks (no change in PaCO2 for MA) but led to very similar changes in [O2Hb] and StO2. Thus, the cerebral changes cannot solely be explained by PaCO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction In several studies, we found that during guided rhythmic speech exercises, a decrease in cerebral hemodynamics and oxygenation occurred as the result of a decrease in the partial pressure of carbon dioxide in the arterial blood (PaCO2) during speaking. To further explore the effect of PaCO2 variations on cerebral hemodynamics and oxygenation, the aim of the present study was to investigate the impact of spoken, inner and heard speech tasks on these parameters. Material and Methods Speech tasks included recitation or inner recitation or listening to hexameter, alliteration, prose, or performing mental arithmetic. The following physiological parameters were measured: tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin, deoxyhemoglobin, total hemoglobin (over the left and right anterior prefrontal cortex, using an ISS OxiplexTS frequency domain near-infrared spectrometer) and end-tidal CO2 (PETCO2; using Nellcor N1000 and Datex NORMOCAP capnographs). Statistical analysis was applied to the differences between baseline, 2 tasks, and 3 post-baseline periods. Data of 3 studies with 24, 7 and 29 healthy subjects, respectively, were combined, and linear regression analyses were calculated. Results Linear regression analyses revealed significant relations between changes in oxyhemoglobin, deoxyhemoglobin, total hemoglobin or StO2 and the participants’ age, the baseline PETCO2 or certain speech tasks. While hexameter verses affected changes during the tasks, alliteration verses only affected changes during the recovery phase. Discussion and Conclusion The observed effects in hemodynamics and oxygenation indicate a combination of neurovascular coupling (increased neuronal activity leading to an increase in the cerebral metabolic rate of oxygen resulting in an increase in cerebral flood flow/volume) and CO2 reactivity (increased breathing during speech tasks causing a decrease in PaCO2 leading to vasoconstriction and decrease in cerebral blood flow). The neurovascular coupling characteristics are task-dependent. References Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013;66:71-79. Scholkmann F, Wolf M, Wolf U. The effect of inner speech on arterial CO2, cerebral hemodynamics and oxygenation – A functional NIRS study. Adv Exp Med Biol 2013;789:81-87.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).