997 resultados para freshwater ecosystem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a growing number of large-scale freshwater ecological restoration projects worldwide. Assessments of the benefits and costs of restoration often exclude an analysis of uncertainty in the modelled outcomes. To address this shortcoming we explicitly model the uncertainties associated with measures of ecosystem health in the estuary of the Murray– Darling Basin, Australia and how those measures may change with the implementation of a Basin-wide Plan to recover water to improve ecosystem health. Specifically, we compare two metrics – one simple and one more complex – to manage end-of-system flow requirements for one ecosystem asset in the Basin, the internationally important Coorong saline wetlands. Our risk assessment confirms that the ecological conditions in the Coorong are likely to improve with implementation of the Basin Plan; however, there are risks of a Type III error (where the correct answer is found for the wrong question) associated with using the simple metric for adaptive management. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the relative influence of: (i) landscape scale environmental and hydrological factors; (ii) local scale environmental conditions including recent flow history, and; (iii) spatial effects (proximity of sites to one another) on the spatial and temporal variation in local freshwater fish assemblages in the Mary River, south-eastern Queensland, Australia. Using canonical correspondence analysis, each of the three sets of variables explained similar amounts of variation in fish assemblages (ranging from 44 to 52%). Variation in fish assemblages was partitioned into eight unique components: pure environmental, pure spatial, pure temporal, spatially structured environmental variation, temporally structured environmental variation, spatially structured temporal variation, the combined spatial/temporal component of environmental variation and unexplained variation. The total variation explained by these components was 65%. The combined spatial/temporal/environmental component explained the largest component (30%) of the total variation in fish assemblages, whereas pure environmental (6%), temporal (9%) and spatial (2%) effects were relatively unimportant. The high degree of intercorrelation between the three different groups of explanatory variables indicates that our understanding of the importance to fish assemblages of hydrological variation (often highlighted as the major structuring force in river systems) is dependent on the environmental context in which this role is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The toxic effects of La3+ on Tetrahymena thermophila have been studied by microcalorimetry at 28 degrees C. The metabolic rate constant (r) and peak time were linked to the concentration of La3+. The changes of metabolic rate constant indicated that low-concentration La3+ (0-75 mg/L) had no significant effects on the metabolism of Tetrahymena cells but high-concentration La3+ (100-175 mg/L) could inhibit their metabolism. From the results obtained by cell counting and fluorescence depolarization measurements, the inhibition of metabolism resulted from the decrease in cell number and the reduction in cell membrane fluidity. According to the results, it is clear that the metabolic mechanism of Tetrahymena cells has been changed with the addition of high-concentration La3+. In addition, microcalorimetry of Tetrahymena could be a sensible, easy-to-use, and convenient method for monitoring the potential effects of rare earth elements on cells and the freshwater ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El Lago Chad ha sido durante varias décadas, una fuente de supervivencia económica para millones de personas que habitan en cuatro Estados a saber; Nigeria, Níger, Chad y Camerún. No obstante, el cambio climático, el aumento acelerado de la población, la explotación insostenible y la mala regulación de los Estados ribereños han sido los principales factores que han dado lugar, en la última década, a la dramática reducción del nivel del Lago Chad. Teniendo en cuenta que los Estados aledaños al Lago, se encuentran inmersos en una Interdependencia Compleja, este nuevo contexto, ha tenido un impacto directo en la región, debido a que ha agravado otras variables económicas, sociales, ambientales y políticas, dejando un ambiente de inseguridad regional. De esta manera, la reducción de la Cuenca del Lago Chad representa una amenaza compartida que vincula estrechamente a Nigeria, Níger, Chad y Camerún, lo que permite vislumbrar la existencia de un Subcomplejo de Seguridad Regional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genus Macrobrachium (Bate, 1868) belongs to the Palaemonidae family. These species are commonly found in lakes, floodplains and rivers in tropical and subtropical regions of South America. The Macrobrachium genus encompasses nearly 210 species of ecological and economic importance. In this study, three species of Macrobrachium (M acrobrachium jelskii, M acrobrachium amazonicum and M acrobrachium brasiliense) were studied in order to characterize the esterase patterns in the hepatopancreas, which were still unknown. Esterases are enzymes which catalyze the hydrolysis of esters. In the hepatopancreas, these enzymes play important roles in several metabolic processes involved in some functions of this organ, such as detoxification and digestion. Twelve esterase bands (EST1 to EST12) were detected in these species, and a comparison among them showed no qualitative differences in interspecific bands, or between males and females. Inhibitors were used to classify the esterase bands. The results indicated seven acetylesterases, two carboxylesterases, one arylesterase, and one cholinesterase. The EST11 band was not detected in these procedures because of its lower frequency. Statistical analyses showed no variability among the species, in either interspecific or intraspecific assays. These results support the hypothesis of a high evolutionary conservation of esterases in the hepatopancreas of these crustaceans. The data enabled us to assess the genetic structure of these species through the use of esterasic enzymes. It also contributes to our knowledge about the biology of these poorly studied species. Knowledge on the genetic structure of populations and species are essential when defining priorities for their management and conservation. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La gestión de los recursos hídricos se convierte en un reto del presente y del futuro frente a un panorama de continuo incremento de la demanda de agua debido al crecimiento de la población, el crecimiento del desarrollo económico y los posibles efectos del calentamiento global. La política hidráulica desde los años 60 en España se ha centrado en la construcción de infraestructuras que han producido graves alteraciones en el régimen natural de los ríos. Estas alteraciones han provocado y acrecentado los impactos sobre los ecosistemas fluviales y ribereños. Desde los años 90, sin embargo, ha aumentado el interés de la sociedad para conservar estos ecosistemas. El concepto de caudales ambientales consiste en un régimen de caudales que simula las características principales del régimen natural. Los caudales ambientales están diseñados para conservar la estructura y funcionalidad de los ecosistemas asociados al régimen fluvial, bajo la hipótesis de que los elementos que conforman estos ecosistemas están profundamente adaptados al régimen natural de caudales, y que cualquier alteración del régimen natural puede provocar graves daños a todo el sistema. El método ELOHA (Ecological Limits of Hydrological Alteration) tiene como finalidad identificar las componentes del régimen natural de caudales que son clave para mantener el equilibrio de los ecosistemas asociados, y estimar los límites máximos de alteración de estas componentes para garantizar su buen estado. Esta tesis presenta la aplicación del método ELOHA en la cuenca del Ebro. La cuenca del Ebro está profundamente regulada e intervenida por el hombre, y sólo las cabeceras de los principales afluentes del Ebro gozan todavía de un régimen total o cuasi natural. La tesis se estructura en seis capítulos que desarrollan las diferentes partes del método. El primer capítulo explica cómo se originó el concepto “caudales ambientales” y en qué consiste el método ELOHA. El segundo capítulo describe el área de estudio. El tercer capítulo realiza una clasificación de los regímenes naturales de la cuenca (RNC) del Ebro, basada en series de datos de caudal mínimamente alterado y usando exclusivamente parámetros hidrológicos. Se identificaron seis tipos diferentes de régimen natural: pluvial mediterráneo, nivo-pluvial, pluvial mediterréaneo con una fuerte componente del caudal base, pluvial oceánico, pluvio-nival oceánico y Mediterráneo. En el cuarto capítulo se realiza una regionalización a toda la cuenca del Ebro de los seis RNC encontrados en la cueca. Mediante parámetros climáticos y fisiográficos se extrapola la información del tipo de RNC a puntos donde no existen datos de caudal inalterado. El patrón geográfico de los tipos de régimen fluvial obtenido con la regionalización resultó ser coincidente con el patrón obtenido a través de la clasificación hidrológica. El quinto capítulo presenta la validación biológica de los procesos de clasificación anteriores: clasificación hidrológica y regionalización. La validación biológica de los tipos de regímenes fluviales es imprescindible, puesto que los diferentes tipos de régimen fluvial van a servir de unidades de gestión para favorecer el mantenimiento de los ecosistemas fluviales. Se encontraron diferencias significativas entre comunidades biológicas en cinco de los seis tipos de RNC encontrados en la cuenca. Finalmente, en el sexto capítulo se estudian las relaciones hidro-ecológicas existentes en tres de los seis tipos de régimen fluvial encontrados en la cuenca del Ebro. Mediante la construcción de curvas hidro-ecológicas a lo largo de un gradiente de alteración hidrológica, se pueden sugerir los límites de alteración hidrológica (ELOHAs) para garantizar el buen estado ecológico en cada uno de los tipos fluviales estudiados. Se establecieron ELOHAs en tres de los seis tipos de RNC de la cuenca del Ebro Esta tesis, además, pone en evidencia la falta de datos biológicos asociados a registros de caudal. Para llevar a cabo la implantación de un régimen de caudales ambientales en la cuenca, la ubicación de los puntos de muestreo biológico cercanos a estaciones de aforo es imprescindible para poder extraer relaciones causa-efecto de la gestión hidrológica sobre los ecosistemas dependientes. ABSTRACT In view of a growing freshwater demand because of population raising, improvement of economies and the potential effects of climate change, water resources management has become a challenge for present and future societies. Water policies in Spain have been focused from the 60’s on constructing hydraulic infrastructures, in order to dampen flow variability and granting water availability along the year. Consequently, natural flow regimes have been deeply altered and so the depending habitats and its ecosystems. However, an increasing acknowledgment of societies for preserving healthy freshwater ecosystems started in the 90’s and agreed that to maintain healthy freshwater ecosystems, it was necessary to set environmental flow regimes based on the natural flow variability. The Natural Flow Regime paradigm (Richter et al. 1996, Poff et al. 1997) bases on the hypothesis that freshwater ecosystems are made up by elements adapted to natural flow conditions, and any change on these conditions can provoke deep impacts on the whole system. Environmental flow regime concept consists in designing a flow regime that emulates natural flow characteristics, so that ecosystem structure, functions and services are maintained. ELOHA framework (Ecological Limits of Hydrological Alteration) aims to identify key features of the natural flow regime (NFR) that are needed to maintain and preserve healthy freshwater and riparian ecosystems. Moreover, ELOHA framework aims to quantify thresholds of alteration of these flow features according to ecological impacts. This thesis describes the application of the ELOHA framework in the Ebro River Basin. The Ebro River basin is the second largest basin in Spain and it is highly regulated for human demands. Only the Ebro headwaters tributaries still have completely unimpaired flow regime. The thesis has six chapters and the process is described step by step. The first chapter makes an introduction to the origin of the environmental flow concept and the necessity to come up. The second chapter shows a description of the study area. The third chapter develops a classification of NFRs in the basin based on natural flow data and using exclusively hydrological parameters. Six NFRs were found in the basin: continental Mediterranean-pluvial, nivo-pluvial, continental Mediterranean pluvial (with groundwater-dominated flow pattern), pluvio-oceanic, pluvio-nival-oceanic and Mediterranean. The fourth chapter develops a regionalization of the six NFR types across the basin by using climatic and physiographic variables. The geographical pattern obtained from the regionalization process was consistent with the pattern obtained with the hydrologic classification. The fifth chapter performs a biological validation of both classifications, obtained from the hydrologic classification and the posterior extrapolation. When the aim of flow classification is managing water resources according to ecosystem requirements, a validation based on biological data is compulsory. We found significant differences in reference macroinvertebrate communities between five over the six NFR types identified in the Ebro River basin. Finally, in the sixth chapter we explored the existence of significant and explicative flow alteration-ecological response relationships (FA-E curves) within NFR types in the Ebro River basin. The aim of these curves is to find out thresholds of hydrological alteration (ELOHAs), in order to preserve healthy freshwater ecosystem. We set ELOHA values in three NFR types identified in the Ebro River basin. During the development of this thesis, an inadequate biological monitoring in the Ebro River basin was identified. The design and establishment of appropriate monitoring arrangements is a critical final step in the assessment and implementation of environmental flows. Cause-effect relationships between hydrology and macroinvertebrate community condition are the principal data that sustain FA-E curves. Therefore, both data sites must be closely located, so that the effects of external factors are minimized. The scarce hydro-biological pairs of data available in the basin prevented us to apply the ELOHA method at all NFR types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L−1, accounting for ca. 3.32 ± 0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year−1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this thesis is to analyse interactions between freshwater flows, terrestrial ecosystems and human well-being. Freshwater management and policy has mainly focused on the liquid water part (surface and ground water run off) of the hydrological cycle including aquatic ecosystems. Although of great significance, this thesis shows that such a focus will not be sufficient for coping with freshwater related social-ecological vulnerability. The thesis illustrates that the terrestrial component of the hydrological cycle, reflected in vapour flows (or evapotranspiration), serves multiple functions in the human life-support system. A broader understanding of the interactions between terrestrial systems and freshwater flows is particularly important in light of present widespread land cover change in terrestrial ecosystems. The water vapour flows from continental ecosystems were quantified at a global scale in Paper I of the thesis. It was estimated that in order to sustain the majority of global terrestrial ecosystem services on which humanity depends, an annual water vapour flow of 63 000 km3/yr is needed, including 6800 km3/yr for crop production. In comparison, the annual human withdrawal of liquid water amounts to roughly 4000 km3/yr. A potential conflict between freshwater for future food production and for terrestrial ecosystem services was identified. Human redistribution of water vapour flows as a consequence of long-term land cover change was addressed at both continental (Australia) (Paper II) and global scales (Paper III). It was estimated that the annual vapour flow had decreased by 10% in Australia during the last 200 years. This is due to a decrease in woody vegetation for agricultural production. The reduction in vapour flows has caused severe problems with salinity of soils and rivers. The human-induced alteration of vapour flows was estimated at more than 15 times the volume of human-induced change in liquid water (Paper II).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.