942 resultados para frequency based knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsequence frequency measurement is a basic and essential problem in knowledge discovery in single sequences. Frequency based knowledge discovery in single sequences tends to be unreliable since different resulting sets may be obtained from a same sequence when different frequency metrics are adopted. In this chapter, we investigate subsequence frequency measurement and its impact on the reliability of knowledge discovery in single sequences. We analyse seven previous frequency metrics, identify their inherent inaccuracies, and explore their impacts on two kinds of knowledge discovered from single sequences, frequent episodes and episode rules. We further give three suggestions for frequency metrics and introduce a new frequency metric in order to improve the reliability. Empirical evaluation reveals the inaccuracies and verifies our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The web is a rich resource for information discovery, as a result web mining is a hot topic. However, a reliable mining result depends on the reliability of the data set. For every single second, the web generate huge amount of data, such as web page requests, file transportation. The data reflect human behavior in the cyber space and therefore valuable for our analysis in various disciplines, e.g. social science, network security. How to deposit the data is a challenge. An usual strategy is to save the abstract of the data, such as using aggregation functions to preserve the features of the original data with much smaller space. A key problem, however is that such information can be distorted by the presence of illegitimate traffic, e.g. botnet recruitment scanning, DDoS attack traffic, etc. An important consideration in web related knowledge discovery then is the robustness of the aggregation method , which in turn may be affected by the reliability of network traffic data. In this chapter, we first present the methods of aggregation functions, and then we employe information distances to filter out anomaly data as a preparation for web data mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postprint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In knowledge discovery in single sequences, different results could be discovered from the same sequence when different frequency measures are adopted. It is natural to raise such questions as (1) do these frequency measures reflect actual frequencies accurately? (2) what impacts do frequency measures have on discovered knowledge? (3) are discovered results accurate and reliable? and (4) which measures are appropriate for reflecting frequencies accurately? In this paper, taking three major factors (anti-monotonicity, maximum-frequency and window-width restriction) into account, we identify inaccuracies inherent in seven existing frequency measures, and investigate their impacts on the soundness and completeness of two kinds of knowledge, frequent episodes and episode rules, discovered from single sequences. In order to obtain more accurate frequencies and knowledge, we provide three recommendations for defining appropriate frequency measures. Following the recommendations, we introduce a more appropriate frequency measure. Empirical evaluation reveals the inaccuracies and verifies our findings. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term Hyper-heuristics has recently been employed to refer to 'heuristics that choose heuristics' rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the con-siderable promise for future work in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic Medical Record (EMR) has established itself as a valuable resource for large scale analysis of health data. A hospital EMR dataset typically consists of medical records of hospitalized patients. A medical record contains diagnostic information (diagnosis codes), procedures performed (procedure codes) and admission details. Traditional topic models, such as latent Dirichlet allocation (LDA) and hierarchical Dirichlet process (HDP), can be employed to discover disease topics from EMR data by treating patients as documents and diagnosis codes as words. This topic modeling helps to understand the constitution of patient diseases and offers a tool for better planning of treatment. In this paper, we propose a novel and flexible hierarchical Bayesian nonparametric model, the word distance dependent Chinese restaurant franchise (wddCRF), which incorporates word-to-word distances to discover semantically-coherent disease topics. We are motivated by the fact that diagnosis codes are connected in the form of ICD-10 tree structure which presents semantic relationships between codes. We exploit a decay function to incorporate distances between words at the bottom level of wddCRF. Efficient inference is derived for the wddCRF by using MCMC technique. Furthermore, since procedure codes are often correlated with diagnosis codes, we develop the correspondence wddCRF (Corr-wddCRF) to explore conditional relationships of procedure codes for a given disease pattern. Efficient collapsed Gibbs sampling is derived for the Corr-wddCRF. We evaluate the proposed models on two real-world medical datasets - PolyVascular disease and Acute Myocardial Infarction disease. We demonstrate that the Corr-wddCRF model discovers more coherent topics than the Corr-HDP. We also use disease topic proportions as new features and show that using features from the Corr-wddCRF outperforms the baselines on 14-days readmission prediction. Beside these, the prediction for procedure codes based on the Corr-wddCRF also shows considerable accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The domain of Knowledge Discovery (KD) and Data Mining (DM) is of growing importance in a time where more and more data is produced and knowledge is one of the most precious assets. Having explored both the existing underlying theory, the results of the ongoing research in academia and the industry practices in the domain of KD and DM, we have found that this is a domain that still lacks some systematization. We also found that this systematization exists to a greater degree in the Software Engineering and Requirements Engineering domains, probably due to being more mature areas. We believe that it is possible to improve and facilitate the participation of enterprise stakeholders in the requirements engineering for KD projects by systematizing requirements engineering process for such projects. This will, in turn, result in more projects that end successfully, that is, with satisfied stakeholders, including in terms of time and budget constraints. With this in mind and based on all information found in the state-of-the art, we propose SysPRE - Systematized Process for Requirements Engineering in KD projects. We begin by proposing an encompassing generic description of the KD process, where the main focus is on the Requirements Engineering activities. This description is then used as a base for the application of the Design and Engineering Methodology for Organizations (DEMO) so that we can specify a formal ontology for this process. The resulting SysPRE ontology can serve as a base that can be used not only to make enterprises become aware of their own KD process and requirements engineering process in the KD projects, but also to improve such processes in reality, namely in terms of success rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.