970 resultados para free abelian group


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under p = c, we prove that it is possible to endow the free abelian group of cardinality c with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that it is consistent with ZFC that the free Abelian group of cardinality c admits a topological group topology that makes it countably compact with a non-trivial convergent sequence. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [Narayan Vikas, An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism, J. Comput. System Sci. 53 (1996) 1-9] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of compression of a non-Abelian source.This is motivated by the problem of distributed function computation,where it is known that if one is only interested in computing a function of several sources, then one can often improve upon the compression rate required by the Slepian-Wolf bound. Let G be a non-Abelian group having center Z(G). We show here that it is impossible to compress a source with symbols drawn from G when Z(G) is trivial if one employs a homomorphic encoder and a typical-set decoder.We provide achievable upper bounds on the minimum rate required to compress a non-Abelian group with non-trivial center. Also, in a two source setting, we provide achievable upper bounds for compression of any non-Abelian group, using a non-homomorphic encoder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the spectrum of integral group rings of finitely generated abelian groups G from the scheme-theoretic viewpoint. We prove that the (closed) singular points of Spec Z[G], the (closed) intersection points of the irreducible components of Spec Z[G] and the (closed) points over the prime divisors of vertical bar t(G)vertical bar coincide. We also determine the formal completion of Spec Z[G] at a singular point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutation of S331 to T has little effect on the endocytic trafficking of TGN38. Together, these findings indicate that the S331 hydroxyl group has a direct or indirect effect on the ability of the cytosolic tail of TGN38 to interact with trafficking and/or sorting machinery at the level of the early endosome. In addition, mutation of S331 to either A or D results in increased levels of TGN38 at the cell surface. The results confirm that S331 plays a critical role in the intracellular trafficking of TGN38 and further reveal that TGN38 undergoes a signal-mediated trafficking step at the level of the endosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 43A22, 43A25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finitely generated group is called a Church-Rosser group (growing context-sensitive group) if it admits a finitely generated presentation for which the word problem is a Church-Rosser (growing context-sensitive) language. Although the Church-Rosser languages are incomparable to the context-free languages under set inclusion, they strictly contain the class of deterministic context-free languages. As each context-free group language is actually deterministic context-free, it follows that all context-free groups are Church-Rosser groups. As the free abelian group of rank 2 is a non-context-free Church-Rosser group, this inclusion is proper. On the other hand, we show that there are co-context-free groups that are not growing context-sensitive. Also some closure and non-closure properties are established for the classes of Church-Rosser and growing context-sensitive groups. More generally, we also establish some new characterizations and closure properties for the classes of Church-Rosser and growing context-sensitive languages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that if p is a selective ultrafilter, then for each cardinal alpha <= omega(1), there exists a topological group G such that G(beta) is almost p-compact (in particular, countably compact), for beta < alpha, but G(alpha) is not countably compact. If in addition, we assume Martin's Axiom, then the result above holds for every alpha < c. (C) 2012 Elsevier By. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G be a finite group and ZG its integral group ring. We show that if alpha is a nontrivial bicyclic unit of ZG, then there are bicyclic units beta and gamma of different types, such that and are non-abelian free groups. In the case when G is non-abelian of order coprime to 6 we prove the existence of a bicyclic unit u and a Bass cyclic unit v in ZG, such that < u(m), v > is a free non-abelian group for all sufficiently large positive integers m.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of compression via homomorphic encoding of a source having a group alphabet. This is motivated by the problem of distributed function computation, where it is known that if one is only interested in computing a function of several sources, then one can at times improve upon the compression rate required by the Slepian-Wolf bound. The functions of interest are those which could be represented by the binary operation in the group. We first consider the case when the source alphabet is the cyclic Abelian group, Zpr. In this scenario, we show that the set of achievable rates provided by Krithivasan and Pradhan [1], is indeed the best possible. In addition to that, we provide a simpler proof of their achievability result. In the case of a general Abelian group, an improved achievable rate region is presented than what was obtained by Krithivasan and Pradhan. We then consider the case when the source alphabet is a non-Abelian group. We show that if all the source symbols have non-zero probability and the center of the group is trivial, then it is impossible to compress such a source if one employs a homomorphic encoder. Finally, we present certain non-homomorphic encoders, which also are suitable in the context of function computation over non-Abelian group sources and provide rate regions achieved by these encoders.