986 resultados para fracture reduction
Resumo:
This paper presents a novel technique to create a computerized fluoroscopy with zero-dose image updates for computer-assisted fluoroscopy-based close reduction and osteosynthesis of diaphyseal fracture of femurs. With the novel technique, repositioning of bone fragments during close fracture reduction will lead to image updates in each acquired imaging plane, which is equivalent to using several fluoroscopes simultaneously from different directions but without any X-ray radiation. Its application facilitates the whole fracture reduction and osteosynthesis procedure when combining with the existing leg length and antetorsion restoration methods and may result in great reduction of the X-ray radiation to the patient and to the surgical team. In this paper, we present the approach for achieving such a technique and the experimental results with plastic bones.
Resumo:
The distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80+Mac-2+) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front. They were also associated with key events during soft-to-hard callus transition. Resident macrophages (F4/80+Mac-2neg), including osteal macrophages, predominated in the maturing hard callus. Macrophage Fas-induced apoptosis transgenic mice were used to induce macrophage depletion in vivo in the femoral fracture model. Callus formation was completely abolished when macrophage depletion was initiated at the time of surgery and was significantly reduced when depletion was delayed to coincide with initiation of early anabolic phase. Treatment initiating 5 days after fracture with the pro-macrophage cytokine colony stimulating factor-1 significantly enhanced soft callus formation. The data support that inflammatory macrophages were required for initiation of fracture repair, whereas both inflammatory and resident macrophages promoted anabolic mechanisms during endochondral callus formation. Overall, macrophages make substantive and prolonged contributions to fracture healing and can be targeted as a therapeutic approach for enhancing repair mechanisms. Thus, macrophages represent a viable target for the development of pro-anabolic fracture treatments with a potentially broad therapeutic window...
Resumo:
Facial injuries with the retention of foreign bodies inside the tissues, both in soft and hard ones, can cause major functional and aesthetic damage. Among the different etiological agents, cutting tools, fragments of a firearm, the splinter of wood, steel, or iron, launched by misuse, or even caused by defects in equipment, are the main cause of these injuries. The aim of this study was to discuss the peculiarity of the multidisciplinary approach in caring of a 33-year-old man, victim of an accident at work, by the rupture of an emery disc and consequent penetration of the fragments in violation of the tissues in the orbital and zygomatic region of the left side, with perforation of the eyeball and orbital-zygomatic fracture. Urgent treatment consisted of debridement of wounds, bleeding control, removal of foreign bodies, fracture reduction with rigid internal fixation, and suture, performed by the oral and maxillofacial surgical team. Reconstruction of orbital tissues by the ophthalmology team consisted of suture of the injuries. About 1 month after the trauma, phthisis bulbi was noted, and the patient underwent a new procedure under general anesthesia for eye evisceration and installation of an alloplastic prosthesis associated with the homogenous sclera. Facial harmony was restored, especially in aesthetics and function of the zygomatic-orbital complex.
Resumo:
Aim: The aim of this report is to present a case of severe fracture of the maxillary anterior alveolar process with substantial bone dislodgement associated with extrusive tooth luxation and avulsion. Background: Dentoalveolar trauma is a challenge to dentistry, especially in young patients, for it can lead to early tooth loss which compromises oral function, esthetics, self-esteem, and alter the long-term plan of care for the victim. Case Report: A 12-year-old girl with severe dentoalveolar trauma to the maxillary anterior region presented for emergency care for her injury. Treatment consisted of fracture reduction of the alveolar process, repositioning of the teeth that had suffered extrusive luxation, placement of a semi-rigid splint, and suturing of soft tissue lacerations. The traumatized teeth presented with pulpal necrosis and were treated endodontically. After 24 months of follow up, the fracture of the alveolar process was completely healed and the displaced teeth presented no signs of ankylosis or root resorption. Summary: First-aid care contributed remarkably to this case allowing the re-establishment of esthetics, function, and patient's self-esteem. In spite of trauma extension the treatment outcomes were favorable. Clinical Significance: Cases of dentoalveolar trauma should be evaluated on an individual basis. However, early emergency management and adequate follow-up can prevent further complications and contribute to treatment success.
Resumo:
INTRODUCTION To present the accuracy of reduction, complications and results two years after open reduction and internal fixation of displaced acetabular fractures involving the anterior column (AC) through the Pararectus approach. Frequencies for conversion to total hip replacement in the early follow up, the clinical outcome in preserved hips, and the need for an extension of the approach (1st window of the ilioinguinal approach) are compared to the literature about the modified Stoppa approach. METHODS Forty-eight patients (mean age 62 years, range: 16–98; 41 male) with displaced acetabular fractures involving the AC (AC: n = 9; transverse fracture: n = 2; AC and hemitransverse: n = 24; both column: n = 13) were treated between 12/2009 and 12/2011 using the Pararectus approach. Surgical data and accuracy of reduction (using computed tomography) were assessed. Patients were routinely followed up at eight weeks, 6, 12 and 24 months postoperatively. Failure was defined as the need for total hip arthroplasty. Twenty-four months postoperatively the outcome was rated according to Matta. RESULTS In four patients there were four intraoperative complications (minor vascular damage in two, small perforations of the peritoneum in two) which were managed intraoperatively. Fracture reduction showed statistically significant decreases (mean ± SD, pre- vs. postoperative, in mm) in “step-offs”: 2.6 ± 1.9 vs. 0.1 ± 0.3, p < 0.001 and “gaps”: 11.2 ± 6.8 vs. 0.7 ± 0.9, p < 0.001. Accuracy of reduction was “anatomical” in 45, “imperfect” in three. Five (13%) from 38 available patients required a total hip arthroplasty. Of 33 patients with a preserved hip the clinical outcome was graded as “excellent” in 13 or “good” in 20; radiographically, 27 were graded as “excellent”, four as “good” and two as “fair”. An extension of the approach was infrequently used (1st window ilioinguinal approach in 2%, mini-incision at the iliac crest in 21%). CONCLUSION In the treatment of acetabular fractures involving the anterior column the Pararectus approach allowed for anatomic restoration with minimal access morbidity. Results obtained by means of the Pararectus approach after two years at least parallel those reported after utilisation of the modified Stoppa approach. In contrast to the modified Stoppa approach, a relevant extension of the Pararectus approach was almost not necessary.
Resumo:
Limited data exist on the efficacy of long-term therapies for osteoporosis. In osteoporotic postmenopausal women receiving denosumab for 7 years, nonvertebral fracture rates significantly decreased in years 4-7 versus years 1-3. This is the first demonstration of a further benefit on fracture outcomes with long-term therapy for osteoporosis. INTRODUCTION This study aimed to evaluate whether denosumab treatment continued beyond 3 years is associated with a further reduction in nonvertebral fracture rates. METHODS Participants who completed the 3-year placebo-controlled Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were invited to participate in an open-label extension. The present analysis includes 4,074 postmenopausal women with osteoporosis (n = 2,343 long-term; n = 1,731 cross-over) who enrolled in the extension, missed ≤1 dose during their first 3 years of denosumab treatment, and continued into the fourth year of treatment. Comparison of nonvertebral fracture rates during years 1-3 of denosumab with that of the fourth year and with the rate during years 4-7 was evaluated. RESULTS For the combined group, the nonvertebral fracture rate per 100 participant-years was 2.15 for the first 3 years of denosumab treatment (referent) and 1.36 in the fourth year (rate ratio [RR] = 0.64; 95 % confidence interval (CI) = 0.48 to 0.85, p = 0.003). Comparable findings were observed in the groups separately and when nonvertebral fracture rates during years 1-3 were compared to years 4-7 in the long-term group (RR = 0.79; 95 % CI = 0.62 to 1.00, p = 0.046). Fracture rate reductions in year 4 were most prominent in subjects with persisting low hip bone mineral density (BMD). CONCLUSIONS Denosumab treatment beyond 3 years was associated with a further reduction in nonvertebral fracture rate that persisted through 7 years of continuous denosumab administration. The degree to which denosumab further reduces nonvertebral fracture risk appears influenced by the hip bone density achieved with initial therapy.
Resumo:
Background: Bone loss associated with low oestrogen levels in postmenopausal women, and with androgen deprivation therapy in men with hormone-sensitive prostate cancer, result in an increased incidence of fractures. Denosumab has been shown to increase bone mineral density in these two conditions. Objectives/methods: The objective of this evaluation is to review the clinical trials that have studied clinical endpoints in these conditions. Results: FREEDOM (Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months) was an International Phase III clinical trial that measured the clinical endpoints with denosumab in postmenopausal women with osteoporosis. At 36 months, new vertebral fractures had occurred in 7.2% of subjects in the placebo group and this was lowered to 2.3% of subjects treated with denosumab. HALT (Denosumab Hormone Ablation Bone Loss Trial) studied the clinical endpoints in men with non-metastatic prostate cancer receiving androgen-deprivation therapy. The incidence of vertebral fractures was significantly lower in the denosumab group (1.5%) than in the placebo group (3.9%). The incidence of adverse effects with denosumab in both clinical trials was low. Conclusions: Denosumab reduces the incidence of fractures in postmenopausal women with osteoporosis and in men with non-metastatic prostate cancer receiving androgen-deprivation therapy. Denosumab is well tolerated.
Resumo:
This retrospective study evaluated 32 cases of supracondylar fractures of the humerus in children, according to percutaneous crossed Kirschner-wire fixation. Follow-up was performed by radiographs of Baumann's angle and clinical evaluation of joint movement and carrying angle. According to Flynn's criteria, results were satisfactory in all cases, indicating that this method is a safe and efficient method in the treatment of such fractures.
Resumo:
Osteopetrosis is a rare hereditary condition characterized by increased bone density. The jaws, bones, and teeth invariably are affected and the osteopetrosis is directly proportional with the severity of the disease. This article describes a clinical case of osteopetrosis and reviews the clinicopathologic, radiographic, and treatment features.
Resumo:
Background: Intraperitoneal adhesions are common in equines, especially following exploratory celiotomy. Adhesiolysis is the treatment of choice for patients presenting postsurgical adhesions. Laparoscopic approach for adhesiolysis presents several advantageous aspects in human patients. The aim of the current study was to report a case of successful laparoscopic adhesiolysis in a mini pony horse. Case: A male Shetland Pony, weighing 140 kg, was admitted under complaint of right hind limb trauma and treated surgically for metatarsal fracture reduction. The patient has also had intermittent episodes of colic and was always treated clinically without major complications. The pony had no history of previous abdominal surgery and no episodes of acute abdomen were seen during hospital stay. Three months following ostheosynthesis, an exploratory laparoscopic approach was carried out to assess the possible cause or consequences of the episodes of acute abdomen. The patient was submitted to general anesthesia, positioned in dorsal recumbency and the abdomen was clipped and aseptically prepared for surgery. During the laparoscopic inspection, there were adhesions involving the ventral abdominal wall and a ventral mesogastric segment of duodenum. Laparoscopic adhesiolysis was performed using a two-port approach, by gently breaking the adhesion bands using meticulous traction with a 10-mm laparoscopic atraumatic Babcock forceps. Afterwards, the intestinal loop was rinsed with heparin sodium solution diluted in normal saline. The pneumoperitoneum was completely drained and the trocars sequentially withdrawn from the abdominal wall. The synthesis of the muscular layer was carried out using an interrupted cross mattress pattern, followed by synthesis of the skin with an interrupted cushion pattern. Total surgical time was 58 min. the patient was able to recover without complications. In the early postoperative period, the surgical recovery was considered excellent. No apparent adhesion involving the previously affected intestinal loop was found during the ultrasound exam following 15 days of surgery. Furthermore, the surgical wounds had healed completely, with no complications. Discussion: In the current case report, the primary cause of the acute abdomen episodes was not determined since the patient had never undergone abdominal surgery. It was hypothesized that an acute inflammation of the duodenal loop that was involved by the adhesion bands may have triggered the adhesiogenesis. Laparoscopy was efficient and presented a short operative time, due to magnification of image and adequate observation of structures surrounded by adhesion bands. Although the use of Babcock forceps is not usually recommended for adhesiolysis in the current literature, it was both effective in manipulating the bowel and performing the adhesiolysis. The heparin solution diluted in normal saline was effective in preventing the recurrence of new adhesions, which was evidenced by ultrasonography following 15 days. The laparoscopic approach usually minimizes the new formation of adhesions as trauma to the peritoneal surfaces is minimized by the use of delicate instruments, as observed in the current study. In addition, laparoscopy reduces the possibility of contact among the peritoneal surfaces and foreign bodies, such as gauze, glove powder and room air particles. Moreover, it maintains the abdominal surfaces in adequate humidity environment.
Resumo:
The zygomatic-maxillary complex due to its projection framed as one of the areas hardest hit by injuries, as well as the nasal bones. Component important in this context, the zygomatic arch fracture is under the direct action of forces due to its structure fragile, resulting in loss of normal convex curvature. Therefore, it is aimed to report a clinical case of male patient, who had leucoderma zygomatic bone fracture using access transcutaneous and intra-oral fracture reduction body of zygoma and zygomatic arch. In addition to evidence combination of closed and open techniques for solving the case. The technique provided the patient excellent cosmetic and functional results.
Resumo:
Are called panfacial fractures when the upper, middle and lower facial thirds present fractures concurrently. In clinical practice, came to imply the involvement of two facial thirds. Panfacial fractures are usually accompanied by other systemic lesions that impair the patient's life and therefore require primary treatment. Almost invariably are associated with damage to soft tissues and severe losses of bone structures which may lead to severe facial deformations and malocclusions. The panfacial fractures treatment is complex because often there isn’t a stable bone structure to guide the reduction of various fractures. Several orders of treatment have been proposed, but they are variations of the two classical approaches "bottom to top and inside-out" and "top to bottom and out-inside". The aim of this paper is to discuss the principles of management and panfacial fractures treatment, emphasizing the sequence of fracture reduction and highlighting its indications, advantages and disadvantages, through literature review and reports of surgical clinic cases. We conclude that the exact sequence of fracture reduction is not as important as developing a treatment plan that allows accurate positioning of the fractured segments.
Resumo:
Background Acetabular fractures still are among the most challenging fractures to treat because of complex anatomy, involved surgical access to fracture sites and the relatively low incidence of these lesions. Proper evaluation and surgical planning is necessary to achieve anatomic reduction of the articular surface and stable fixation of the pelvic ring. The goal of this study was to test the feasibility of preoperative surgical planning in acetabular fractures using a new prototype planning tool based on an interactive virtual reality-style environment. Methods 7 patients (5 male and 2 female; median age 53 y (25 to 92 y)) with an acetabular fracture were prospectively included. Exclusion criterions were simple wall fractures, cases with anticipated surgical dislocation of the femoral head for joint debridement and accurate fracture reduction. According to the Letournel classification 4 cases had two column fractures, 2 cases had anterior column fractures and 1 case had a T-shaped fracture including a posterior wall fracture. The workflow included following steps: (1) Formation of a patient-specific bone model from preoperative computed tomography scans, (2) interactive virtual fracture reduction with visuo-haptic feedback, (3) virtual fracture fixation using common osteosynthesis implants and (4) measurement of implant position relative to landmarks. The surgeon manually contoured osteosynthesis plates preoperatively according to the virtually defined deformation. Screenshots including all measurements for the OR were available. The tool was validated comparing the preoperative planning and postoperative results by 3D-superimposition. Results Preoperative planning was feasible in all cases. In 6 of 7 cases superimposition of preoperative planning and postoperative follow-up CT showed a good to excellent correlation. In one case part of the procedure had to be changed due to impossibility of fracture reduction from an ilioinguinal approach. In 3 cases with osteopenic bone patient-specific prebent fixation plates were helpful in guiding fracture reduction. Additionally, anatomical landmark based measurements were helpful for intraoperative navigation. Conclusion The presented prototype planning tool for pelvic surgery was successfully integrated in a clinical workflow to improve patient-specific preoperative planning, giving visual and haptic information about the injury and allowing a patient-specific adaptation of osteosynthesis implants to the virtually reduced pelvis.
Resumo:
Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called "vertebral body stenting" (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean +/- SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 +/- 6.2; VBS: 3.7 +/- 3.8], and total anterior height gain [kyphoplasty: 8.0 +/- 9.4; VBS: 13.3 +/- 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation.