980 resultados para fractional diffusion-wave equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 31B10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 35R11, 42A38, 26A33, 33E12

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35A15, 44A15, 26A33

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified Bargmann-Wigner method is used to derive (6s + 1)-component wave equations. The relation between different forms of these equations is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.