916 resultados para fourier transforms
Resumo:
It is proved that there does not exist any non zero function in with if its Fourier transform is supported by a set of finite packing -measure where . It is shown that the assertion fails for . The result is applied to prove L-p Wiener Tauberian theorems for R-n and M(2).
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
Resumo:
R. Zwiggelaar and C.R. Bull, 'Optical determination of fractal dimensions using Fourier transforms', Optical Engineering 34 (5), 1325-1332 (1995)
Resumo:
This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.
Resumo:
Properties of the Jacobi script v sign3-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of script v sign-functions is stressed. An important conjecture is studied. © 2006 American Institute of Physics.
Resumo:
Thesis--University of Illinois.
Resumo:
Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
The Fourier transforms of the collagen molecular structure have been calculated taking into consideration various side chain atoms, as well as the presence of bound water molecules. There is no significant change in the calculated intensity distribution on including the side chain atoms of non-imino-acid residues. Taking into account the presence of about two bound water molecules per tripeptide unit, the agreement with the observed x-ray pattern is slightly improved. Fourier transforms have also been calculated for the detailed molecular geometries proposed from other laboratories. It is found that there are no major differences between them, as compared to our structure, either in the positions of peak intensity or in the intensity distribution. Hence it is not possible to judge the relative merits of the various molecular geometries for the collagen triple helix from a comparison of the calculated transforms with the meagre data available from its x-ray fibre pattern. It is also concluded that the collagen molecular structure should be regarded as a somewhat flexible chain structure, capable of adapting itself to the requirements of the different side groups which occur in each local region.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.