871 resultados para forward selection component analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vigna unguiculata (L.) Walp (cowpea) is a food crop with high nutritional value that is cultivated throughout tropical and subtropical regions of the world. The main constraint on high productivity of cowpea is water deficit, caused by the long periods of drought that occur in these regions. The aim of the present study was to select elite cowpea genotypes with enhanced drought tolerance, by applying principal component analysis to 219 first-cycle progenies obtained in a recurrent selection program. The experimental design comprised a simple 15 x 15 lattice with 450 plots, each of two rows of 10 plants. Plants were grown under water-deficit conditions by applying a water depth of 205 mm representing one-half of that required by cowpea. Variables assessed were flowering, maturation, pod length, number and mass of beans/pod, mass of 100 beans, and productivity/plot. Ten elite cowpea genotypes were selected, in which principal components 1 and 2 encompassed variables related to yield (pod length, beans/pod, and productivity/plot) and life precocity (flowering and maturation), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03±0.01, 0.07±0.01, 0.06±0.02, and 0.24±0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87±0.07, 0.23±0.02, -0.15±0.01, 0.67±0.13, -0.07±0.13, and 0.02±0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components. © CSIRO 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Near Infrared Spectroscopy (NIRS) industrial application was developed by the LPF-Tagralia team, and transferred to a Spanish dehydrator company (Agrotécnica Extremeña S.L.) for the classification of dehydrator onion bulbs for breeding purposes. The automated operation of the system has allowed the classification of more than one million onion bulbs during seasons 2004 to 2008 (Table 1). The performance achieved by the original model (R2=0,65; SEC=2,28ºBrix) was enough for qualitative classification thanks to the broad range of variation of the initial population (18ºBrix). Nevertheless, a reduction of the classification performance of the model has been observed with the passing of seasons. One of the reasons put forward is the reduction of the range of variation that naturally occurs during a breeding process, the other is the variations in other parameters than the variable of interest but whose effects would probably be affecting the measurements [1]. This study points to the application of Independent Component Analysis (ICA) on this highly variable dataset coming from a NIRS industrial application for the identification of the different sources of variation present through seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our paper is to examine whether Exchange Traded Funds (ETFs) diversify away the private information of informed traders. We apply the spread decomposition models of Glosten and Harris (1998) and Madhavan, Richardson and Roomans (1997) to a sample of ETFs and their control securities. Our results indicate that ETFs have significantly lower adverse selection costs than their control securities. This suggests that private information is diversified away for these securities. Our results therefore offer one explanation for the rapid growth in the ETF market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People’s beliefs about where society has come from and where it is going have personal and political consequences. Here, we conduct a detailed investigation of these beliefs through re-analyzing Kashima et al.’s (Study 2, n = 320) data from China, Australia, and Japan. Kashima et al. identified a “folk theory of social change” (FTSC) belief that people in society become more competent over time, but less warm and moral. Using three-mode principal components analysis, an under-utilized analytical method in psychology, we identified two additional narratives: Utopianism/Dystopianism (people becoming generally better or worse over time) and Expansion/Contraction (an increase/decrease in both positive and negative aspects of character over time). Countries differed in endorsement of these three narratives of societal change. Chinese endorsed the FTSC and Utopian narratives more than other countries, Japanese held Dystopian and Contraction beliefs more than other countries, and Australians’ narratives of societal change fell between Chinese and Japanese. Those who believed in greater economic/technological development held stronger FTSC and Expansion/Contraction narratives, but not Utopianism/Dystopianism. By identifying multiple cultural narratives about societal change, this research provides insights into how people across cultures perceive their social world and their visions of the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some statistical procedures already available in literature are employed in developing the water quality index, WQI. The nature of complexity and interdependency that occur in physical and chemical processes of water could be easier explained if statistical approaches were applied to water quality indexing. The most popular statistical method used in developing WQI is the principal component analysis (PCA). In literature, the WQI development based on the classical PCA mostly used water quality data that have been transformed and normalized. Outliers may be considered in or eliminated from the analysis. However, the classical mean and sample covariance matrix used in classical PCA methodology is not reliable if the outliers exist in the data. Since the presence of outliers may affect the computation of the principal component, robust principal component analysis, RPCA should be used. Focusing in Langat River, the RPCA-WQI was introduced for the first time in this study to re-calculate the DOE-WQI. Results show that the RPCA-WQI is capable to capture similar distribution in the existing DOE-WQI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q >= 1 relays, and analyze and optimize it. Even for a large number of relays, the scalable algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.