966 resultados para forest sector models
Resumo:
The aim of this report is to give a comprehensive overview of the opportunities integrated biorefining can offer to Finnish forest industry companies and to assess what changes it would require from these companies to implement biorefining into their business. Also the strengths and weaknesses of the Finnish forest industry companies connected to biorefining are examined through innovation management theory frames, industry comparisons, company examples and couple of case-examples. The conclusions of the report include the statement that the Finnish forest industry has a good starting point for biorefinering and many advantages compared to other countries and industries. Unfortunately the history of the industry is holding it back and the thinking patterns would have to be altered to a more innovative and co-operational direction.
Resumo:
The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
Multi-country models have not been very successful in replicating important features of the international transmission of business cycles. Standard models predict cross-country correlations of output and consumption which are respectively too low and too high. In this paper, we build a multi-country model of the business cycle with multiple sectors in order to analyze the role of sectoral shocks in the international transmission of the business cycle. We find that a model with multiple sectors generates a higher cross-country correlation of output than standard one-sector models, and a lower cross-country correlation of consumption. In addition, it predicts cross-country correlations of employment and investment that are closer to the data than the standard model. We also analyze the relative effects of multiple sectors, trade in intermediate goods, imperfect substitution between domestic and foreign goods, home preference, capital adjustment costs, and capital depreciation on the international transmission of the business cycle.
Resumo:
This paper constructs and estimates a sticky-price, Dynamic Stochastic General Equilibrium model with heterogenous production sectors. Sectors differ in price stickiness, capital-adjustment costs and production technology, and use output from each other as material and investment inputs following an Input-Output Matrix and Capital Flow Table that represent the U.S. economy. By relaxing the standard assumption of symmetry, this model allows different sectoral dynamics in response to monetary policy shocks. The model is estimated by Simulated Method of Moments using sectoral and aggregate U.S. time series. Results indicate 1) substantial heterogeneity in price stickiness across sectors, with quantitatively larger differences between services and goods than previously found in micro studies that focus on final goods alone, 2) a strong sensitivity to monetary policy shocks on the part of construction and durable manufacturing, and 3) similar quantitative predictions at the aggregate level by the multi-sector model and a standard model that assumes symmetry across sectors.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
Assessment of the suitability of anthropogenic landscapes for wildlife species is crucial for setting priorities for biodiversity conservation. This study aimed to analyse the environmental suitability of a highly fragmented region of the Brazilian Atlantic Forest, one of the world's 25 recognized biodiversity hotspots, for forest bird species. Eight forest bird species were selected for the analyses, based on point counts (n = 122) conducted in April-September 2006 and January-March 2009. Six additional variables (landscape diversity, distance from forest and streams, aspect, elevation and slope) were modelled in Maxent for (1) actual and (2) simulated land cover, based on the forest expansion required by existing Brazilian forest legislation. Models were evaluated by bootstrap or jackknife methods and their performance was assessed by AUC, omission error, binomial probability or p value. All predictive models were statistically significant, with high AUC values and low omission errors. A small proportion of the actual landscape (24.41 +/- 6.31%) was suitable for forest bird species. The simulated landscapes lead to an increase of c. 30% in total suitable areas. In average, models predicted a small increase (23.69 +/- 6.95%) in the area of suitable native forest for bird species. Being close to forest increased the environmental suitability of landscapes for all bird species; landscape diversity was also a significant factor for some species. In conclusion, this study demonstrates that species distribution modelling (SDM) successfully predicted bird distribution across a heterogeneous landscape at fine spatial resolution, as all models were biologically relevant and statistically significant. The use of landscape variables as predictors contributed significantly to the results, particularly for species distributions over small extents and at fine scales. This is the first study to evaluate the environmental suitability of the remaining Brazilian Atlantic Forest for bird species in an agricultural landscape, and provides important additional data for regional environmental planning.
Resumo:
Corporate Social Responsibility (CSR) addresses the responsibility of companies for their impacts on society. The concept of strategic CSR is becoming increasingly mainstreamed in the forest industry, but there is, however, little consensus on the definition and implementation of CSR. The objective of this research is to build knowledge on the characteristics of CSR and to provide insights on the emerging trend to increase the credibility and legitimacy of CSR through standardization. The study explores how the sustainability managers of European and North American forest companies perceive CSR and the recently released ISO 26000 guidance standard on social responsibility. The conclusions were drawn from an analysis of two data sets; multivariate survey data based on one subset of 30 European and 13 North American responses, and data obtained through in-depth interviewing of 10 sustainability managers that volunteered for an hour long phone discussion about social responsibility practices at their company. The analysis concluded that there are no major differences in the characteristics of cross-Atlantic CSR. Hence, the results were consistent with previous research that suggests that CSR is a case- and company-specific concept. Regarding the components of CSR, environmental issues and organizational governance were key priorities in both regions. Consumer issues, human rights, and financial issues were among the least addressed categories. The study reveals that there are varying perceptions on the ISO 26000 guidance standard, both positive and negative. Moreover, sustainability managers of European and North American forest companies are still uncertain regarding the applicability of the ISO 26000 guidance standard to the forest industry. This study is among the first to provide a preliminary review of the practical implications of the ISO 26000 standard in the forest sector. The results may be utilized by sustainability managers interested in the best practices on CSR, and also by a variety of forest industrial stakeholders interested in the practical outcomes of the long-lasting CSR debate.
Resumo:
La teca (Tectona grandis L.f.) ha sido tradicionalmente considerada como una madera preciosa en los países del SE Asiático, de donde es originaria, pero durante las últimas décadas ha alcanzado especial relevancia en el sector internacional de las maderas tropicales duras de buena calidad. La especie ha sido ampliamente establecida en América Central, donde tiene una gran importancia socioeconómica, tanto por el impacto de las grandes empresas multinacionales que gestionan grandes plantaciones en la región, como por el gran número de pequeños y medianos propietarios que han elegido esta especie para reforestar sus tierras. Pese a la gran importancia de esta especie, se ha desarrollado relativamente poca investigación acerca de su nutrición y de la gestión del suelo necesaria para su establecimiento y mantenimiento en condiciones sostenibles y productivas. En la presente Tesis Doctoral, tras realizar una amplia revisión bibliográfica, se caracterizan los suelos y la nutrición de las plantaciones de teca en América Central y se proponen varias herramientas para la mejora de su gestión. Las plantaciones de teca de América Central presentan habitualmente deficiencias de K y P, además de algunos problemas de acidez ocasionales. Estos se originan, principalmente, por la mala selección de sitio que se realizó en las últimas dos décadas del siglo XX y por el establecimiento de plantaciones de teca por pequeños propietarios en terrenos que no tienen características propicias para la especie. Además, estos problemas comunes relativos a la baja disponibilidad de P y de K en el suelo son causantes de las relativamente bajas concentraciones foliares de estos elementos (0,88±0,07% K y 0,16±0,04% P) encontradas en plantaciones de teca características de la región. Se presentan varios modelos estadísticos que permiten a los gestores: (a) usarlos como referencia para la interpretación de análisis foliares, ya que ofrecen valores que se consideran característicos de plantaciones de teca con un buen estado nutricional; (b) estimar la cantidad de nutrientes acumulados en la biomasa aérea de sus plantaciones y, sobre todo, su extracción a través de la madera en un aprovechamiento forestal, bien sea una clara o la corta final. La gran acumulación de N, P y K en plantaciones de teca ha de ser considerada como un factor fundamental en su gestión. Además, P y K adquieren mayor relevancia aún ya que su extracción del sistema a través de la madera y su escasa disponibilidad en los suelos hacen que se presente un importante desequilibrio que pone en riesgo la sostenibilidad del sistema. En ese sentido, cambiar la época de cosecha, de la actual (en Enero-Mayo) a Septiembre o Diciembre, puede reducir entre un 24 y un 28% la salida de N asociada a la extracción de madera, un 29% la de P y entre un 14 y un 43% la de K. Se estima que la concentración foliar de P es un factor limitante de la productividad de plantaciones de teca en América Central, proponiéndose un nivel crítico de 0,125%. Además, la teca presenta una tolerancia muy baja a suelos salinos, tendencia que no había sido señalada hasta el momento, siendo muy alta la probabilidad de que la plantación tenga un crecimiento lento o muy lento cuando la Saturación de Na es mayor de 1,1%. Por otro lado, se confirma que K es uno de los elementos clave en la nutrición de las plantaciones de teca en la región centroamericana, proponiéndose un nivel crítico provisional de 3,09% para la Saturación de K, por encima del cual es muy probable que la plantación tenga un crecimiento muy alto. Se ha comprobado que las técnicas estadísticas de análisis multivariante pueden ser usadas como herramientas para agrupar los rodales en base a sus similitudes en cuanto a la fertilidad del suelo y mejorar así el diseño de planes de fertilización en plantaciones con una superficie relativamente grande. De esta manera, se pueden ajustar planes de fertilización más eficientes a escala de grupos de rodales, como un primer paso hacia la selvicultura de precisión, intensificando y diversificando la gestión en función de las diferencias edáficas. Finalmente, aunque los análisis foliares y de suelos indiquen la existencia de deficiencias nutricionales, la fertilización de las plantaciones no siempre va a producir efectos positivos sobre su crecimiento si no se diseña adecuadamente teniendo en cuenta varios factores que pueden estar influyendo negativamente en dicha respuesta, como la densidad de las plantaciones (sinergias con la programación de los clareos y claras) y la elección de la dosis y del producto a aplicar (habitualmente dosis bajas de N-P-K en lugar de incluir otros nutrientes como Mg, B y Zn o usar otros productos como micorrizas, biofertilizantes etc…). ABSTRACT Teak (Tectona grandis L.f.) has been traditionally considered as a precious wood in SE Asia, where it is indigenous. However, during recent decades the species has reached worldwide relevance in the tropical high quality hardwood sector. Teak has been widely established in Central America, where it has become a key species in the forest sector due to its socioeconomic impact, either because of the big-scale plantations of transnational companies and the abundant small-scale plantations established by many farmers. Despite the relevance of the species, little research has been carried out regarding its soil fertility and nutrition management, a key issue both for sustainability and productivity. The present Thesis performs a literature review to this respect, characterize the soil fertility and the nutrition of teak plantations of Central America and propose several management tools. Soil deficiencies of K and P are usually found in teak plantations in Central America, in addition to occasional acidity problems. These problems are mainly derived of (a) a poor site selection performed during 80s and 90s; and (b) small-scale plantations by farmers in sites which are not adequate for the species. These common soil fertility problems related with P and K soil availability are probably the cause of the relatively low P and K foliar concentration (0,88±0,07% K y 0,16±0,04% P) found in representative teak plantations of the region. Several statistical models are proposed, which allow forest managers to: (a) use them as a reference for foliar analysis interpretation, as they show values considered as representative for teak plantations with an adequate nutritional status in the region; (b) estimate the amount of nutrients accumulated in the aerial biomass of the plantations and, especially, the amount of them which are extracted from the systems as wood is harvested in thinning or final clearcuts. The accumulation of N, P and K result in a key factor for teak management in the region. This turns out to be especially relevant for the P and K because their high output rate by timber extraction and the low soil availability result in an important unbalance which constitutes a risk regarding the sustainability of the system. To this respect, modifying the harvesting time from the usual right now (January-May, business as usual scenario) to September or December (proposed alternatives) can reduce between 24 and 28% the N output associated to timber extraction, 29% the P output and between 14 and 43% the K. Foliar P concentration is a main limiting factor for teak plantations productivity in Central America and a 0.125% critical level is proposed. In addition, the results show a very low tolerance for soil salinity, tendency which was not previously reported. Hence, the probability of teak plantations to have low or very low Site Index is high when Na Saturation is higher than 1.1%. On the other hand, K is confirmed as one of the key nutrients regarding teak nutrition in Central America and a 3.09% provisional critical level is proposed for K Saturation; when values are above this level the probability of having very high Site Index is high. Multivariate statistical analyses have been successfully tested to be used as tools to group forest stands according to their soil fertility similarities. Hence, more efficient fertilization plans can be designed for each group of stands, intensifying and diversifying nutritional management according to soil fertility differences. This methodology, which is considered as a first step towards precision forestry, is regarded as helpful tool to design fertilization plans in big scale plantations. Finally, even though foliar and soil analysis would point out some nutritional deficiencies in a forest stand, the results show how the fertilization is not always going to have a positive effect over forest growth if it is not adequately designed. Some factors have been identified as determinants of tree response to fertilization: density (synergisms between fertilization and thinning scheduling) and the appropriate selection of dosages and product (usually low dosages are applied and N-P-K is preferred instead of applying other nutrients such as Mg, B or Zn or using other alternatives such as mycorrhizas or biofertilizers).