996 resultados para forest production
Resumo:
This study aimed at characterizing the potential for natural regeneration of native vegetation in the under-story of an earlier Eucalyptus saligna Smith production stand. The study was carried out at the Parque das Neblinas, Bertioga municipality, SP, in a 45 ha third rotation stand; which had been abandoned 15 years ago for natural regeneration to occur. The sampling was done in 24 plots of 20 x 40 m. The sampled area was of 19,200 m(2), with inventory made of 100% of the eucalyptus trees. All regeneration trees with a height >= 1.30 m and DBH >= 5.0 cm were measured, as well as adult individuals with DBH >= 5.0 cm; surveyed in two size classes. 1,417 individuals of E. saligna were measured, with a density of 738,02 individuals/ha and a basal area of 22.69 m(2)/ha. Among 2,763 natural regeneration individuals, 111 species belonged to 66 genera and 34 botanical families. The species represented 43.7% of the tree richness of neighboring native forest fragments. The total estimated density and the basal area were respectively 1,052.6 individuals/ha and 6.4 m(2)/ha of autochthonous trees with DBH >= 5.0 cm (Class 1); while for regeneration there were 3,864.58 individuals/ha, and 2.76 m(2)/ha of individuals with a height >= 1.30 m and DBH <5.0 cm (Class 2). Shannon diversity (H`) was 2.83 and 3.68, respectively, for Classes 1 and 2, and the corrected species richness for a 1000-individual sample (R(1000)) were 75.6 and 87.29 (Fisher`s a index) for the same classes. The majority of the species (34.84%) was typical from the understory of wet tropical forest and had zoochoric fruit dispersal (67.57%). The results indicate that, under these conditions, a eucalyptus forest is able to provide adequate regeneration niches for native vegetation, and may represent a sink habitat for local populations.
Resumo:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.
Resumo:
The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of Sao Paulo: Parque Estadual Turistico do Alto do Ribeira and Parque Estadual de Campos de Jordao. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO(2)) and the following enzyme activities: beta-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO(2). The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO(2), suggesting an advanced stage of succession.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.
Resumo:
Spatial heterogeneity in soils is often characterized by the presence of resource-enriched patches ranging in size from a single shrub to wooded thickets. If the patches persist long enough, the primary constraint on production may transition from one limiting environmental factor to another. Tree islands that are scattered throughout the Florida Everglades basin comprise nutrient-enriched patches, or resource islands, in P-limited oligotrophic marshes. We used principal component analysis and multiple regressions to characterize the belowground environment (soil, hydrology) of one type of tree island, hardwood hammocks, and examined its relationship with the three structural variables (basal area, biomass, and canopy height) indicative of site productivity. Hardwood hammocks in the southern Everglades grow on two distinct soil types. The first, consisting of shallow, organic, relatively low-P soils, is common in the seasonally flooded Marl Prairie landscape. In contrast, hammocks on islands embedded in long hydroperiod marsh have deeper, alkaline, mineral soils with extremely high P concentrations. However, this edaphic variation does not translate simply into differences in forest structure and production. Relative water depth was unrelated to all measures of forest structure and so was soil P, but the non-carbonate component of the mineral soil fraction exhibited a strong positive relationship with canopy height. The development of P-enriched forest resource islands in the Everglades marsh is accompanied by the buildup of a mineral soil; however, limitations on growth in mature islands appear to differ substantively from those that dominate incipient stages in the transformation from marsh to forest. Key words: resource island; tree
Resumo:
We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three-and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined similar to 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 mu mol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by similar to 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 mu mol C mol N(-1) s(-1) at 20 degrees C).
Resumo:
We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.