962 resultados para forest fire
Resumo:
The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O3 production and 24% in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O3 production. The possible impact of this biomass burning plume on O3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O3 increases and elevated CO levels. The model predicts significant changes in O3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O3 impact of Alaskan fires can be potentially significant over Europe.
Resumo:
Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus useful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levoglucosan together with black carbon and ammonium concentrations from the North Greenland Eemian (NEEM) ice cores (77.49° N, 51.2° W; 2480 m a.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temperature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levoglucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian monsoon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.
Resumo:
1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.
Resumo:
"Serial no. 100-89."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Updates and expands on the 1973 edition."
Resumo:
Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.