979 resultados para forced landing
Resumo:
In worldwide aviation operations, bird collisions with aircraft and ingestions into engine inlets present safety hazards and financial loss through equipment damage, loss of service and disruption to operations. The problem is encountered by all types of aircraft, both military and commercial. Modern aircraft engines have achieved a high level of reliability while manufacturers and users continually strive to further improve the safety record. A major safety concern today includes common-cause events which involve significant power loss on more than one engine. These are externally-inflicted occurrences, with the most frequent being encounters with flocks of birds. Most frequently these encounters occur during flight operations in the area on or near airports, near the ground instead of at cruise altitude conditions. This paper focuses on the increasing threat to aircraft and engines posed by the recorded growth in geese populations in North America. Service data show that goose strikes are increasing, especially in North America, consistent with the growing resident geese populations estimated by the United States Department of Agriculture (USDA). Airport managers, along with the governmental authorities, need to develop a strategy to address this large flocking bird issue. This paper also presents statistics on the overall status of the bird threat for birds of all sizes in North America relative to other geographic regions. Overall, the data shows that Canada and the USA have had marked improvements in controlling the threat from damaging birds - except for the increase in geese strikes. To reduce bird ingestion hazards, more aggressive corrective measures are needed in international air transport to reduce the chances of serious incidents or accidents from bird ingestion encounters. Air transport authorities must continue to take preventative and avoidance actions to counter the threat of birdstrikes to aircraft. The primary objective of this paper is to increase awareness of, and focus attention on, the safety hazards presented by large flocking birds such as geese. In the worst case, multiple engine power loss due to large bird ingestion could result in an off-airport forced landing accident. Hopefully, such awareness will prompt governmental regulatory agencies to address the hazards associated with growing populations of geese in North America.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
Background: The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl(2)) in rats subjected to the forced swimming test (FST). Methods: Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty- four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl(2) (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results: CoCl(2) injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl(2) was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion: These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects.
Resumo:
An ultra-low carbon steel (30 ppm after decarburization) containing Al and Si was aged for distinct soaking times at 210 degrees C. The core loss increased continuously until around 24 h. After that, only slight changes were verified. It was found that only the hysteresis loss component changed during the aging treatment. By internal friction test and transmission electron microscopy it was seen that carbon precipitation caused the magnetic aging. By scanning electron microscopy it could be concluded that the increase of aging index was attributed to the high number of carbides larger than 0.1 mu m. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.
Resumo:
We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated duct of rectangular cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal boundary conditions are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alternative rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A theoretical analysis is presented to investigate fully developed (both thermally and hydrodynamically) forced convection in a duct of rectangular cross-section filled with a hyper-porous medium. The Darcy-Brinkman model for flow through porous media was adopted in the present analysis. A Fourier series type solution is applied to obtain the exact velocity and temperature distribution within the duct. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [1], is treated. Values of the Nusselt number and the friction factor as a function of the aspect ratio, the Darcy number, and the viscosity ratio are reported.
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.
Resumo:
The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal development of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles - tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) - in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 perpendicular to 22.0; IG = 26.2 perpendicular to 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 perpendicular to 13.3; IG = 55.8 perpendicular to 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot-ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects. (C) 2007 Elsevier Ltd. All rights reserved.